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Abstract—SimRank is a significant metric to measure the
similarity of nodes in graph data analysis. The problem of
SimRank computation has been studied extensively, however
there is no existing work that can provide one unified algorithm
to support the SimRank computation both on static and temporal
graphs. In this work, we first propose CrashSim, an index-free al-
gorithm for single-source SimRank computation in static graphs.
CrashSim can provide provable approximation guarantees for the
computational results in an efficient way. In addition, as the real-
life graphs are often represented as temporal graphs, CrashSim
enables efficient computation of SimRank in temporal graphs. We
formally define two typical SimRank queries in temporal graphs,
and then solve them by developing an efficient algorithm based on
CrashSim, called CrashSim-T. From the extensive experimental
evaluation using five real-life and synthetic datasets, it can be
seen that the CrashSim algorithm and CrashSim-T substantially
improve the efficiency of the state-of-the-art SimRank algorithms
by about 30%, while achieving the precision of the result set with
about 97%.

I. INTRODUCTION

SimRank has been studied extensively in the past years as a
key technique to support graph data analytics [10], [18], [20],
[25]. Simply put, SimRank is used to measure node-to-node
similarity based on the topology of graphs. The assumption
is that two nodes will be similar if they are both highly
relevant to similar nodes, and each node is maximally similar
to itself [7]. SimRank has broad adoption in many applications,
since it can be applied not only to discover the similarity of
nodes in terms of the graph structure, but also advance many
real-life applications in graph data analytics, such as graph
clustering [23], collaborative filtering [27], web mining [14].

Numerous efforts in the literature have focused on studying
SimRank on static graphs. Jeh and Widom [7] were the first
to propose the SimRank algorithm, which is to recursively
return the SimRank value of all node-pairs in a given graph G
with time complexity O(m2 log 1

ε ), where m is the number
of edges and ε is the worst-case error. Fogaras et al. [4]
developed a Monte-Carlo method that interprets the SimRank
values as the expected function of the total time from the
start of nodes u and v to the last encounter of two random
walkers. To address the problem of the Top-k SimRank Query,
Pei et al. [13] proposed two heuristic algorithms based on the
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truncated random walk strategy and prioritized the propagation
respectively. A recent approach to SimRank computation is
SLING [18], where the authors designed an efficient index
structure for SimRank computation with at most ε additive
error, also giving another interpretation of SimRank based on√
c-walk. This approach is however not efficient since its index

structure needs to be rebuilt from scratch whenever the input
graph is updated, and its index construction requires several
hours even on medium-size graphs with 1 million nodes [10].
The state-of-the-art approach to SimRank computation on
static graphs with no index is ProbeSim [10]– an approach
shown to considerably outperform existing solutions in terms
of efficiency and scalability.

In addition, SimRank computation has also been studied in
dynamic graphs by considering the updates of edges and/or
nodes. Li et al. [9] provided another formulation of SimRank
by using Kronecker product and vectorization operators that
can support static and dynamic SimRank computations. Yu
et al. [25] proposed a fast incremental algorithm to compute
all-pairs SimRank by defining the SimRank update matrix
of every link’s changes, using an ‘Affected Area’ to skip
unnecessary computation. Wong et al. [12] presented an index
schema based on a random walk to compute SimRank over
large dynamic graphs. However, all these studies did not fully
explore the nature of time in the temporal graphs [2]. Temporal
graphs can be expressed through a set of snapshots, where each
snapshot contains the structure of the graph in a particular
moment in time (i.e., a time instant). For example, in social
networks, the interaction network formed among users changes
throughout time as new interactions take place and active
interactions become inactive with time [15]. Similarly, in
DBLP networks, the cooperative relationship between authors
are established and dissolved over time [1].

Example 1. In a product recommendation system, given a
user u, the item purchased by u might be recommended to
other users who are similar to u. However, users’ interests
may change frequently. If we define a group of users where
the similarities between these users and u are greater than
a threshold θ continuously for a period of time, the items
recommended for such a similar group based on u’s interests
will be more appropriate. At the same time, the similarity



trend between users is also an important property. Sometimes,
the similarity between the user u and a user v is high at
the current time instant, but then their similarity reduces
gradually. Thus, it may not be worthwhile to recommend u’s
items of interest to v.

The above example requires a new type of SimRank queries
- temporal SimRank queries that focus on finding a node set
that meets certain requirements such as trend or threshold on
temporal graphs. To handle such queries, the most intuitive
method is to adopt the existing SimRank algorithms proposed
over static networks applied on each individual snapshot in
order to compute the SimRank between the source u and any
other node v during the entire query interval. In that way, the
node set is updated at every time instant filtering out nodes that
do not satisfy query requirements. Similarly, we can consider
adjusting the SimRank computation algorithms for dynamic
graphs to the temporal graphs, but even in such a case, we
would need to re-compute the SimRank value every time an
edge or a node gets updated. These straightforward methods
are obviously not efficient when either the graph or the query
interval is large.

Therefore, in this paper, we design an efficient and effective
algorithm - CrashSim that can support the SimRank computa-
tion on both static and temporal graphs altogether. CrashSim
can compute the approximate SimRank value with an error
bound and is more efficient than the state-of-the-art algorithms
for static graphs. Specifically, we adopt the computation of
SimRank from [10] as computing the total probability that
two random walks starting from u and v first meet at node
ui. The ProbeSim algorithm presented in [10] starts a

√
c-

walk [18] (a variant of random walk where c is the decay
factor for SimRank computation) from each ui to find every
node v that has a non-negligible probability to meet ui. This
process is repeated several times to guarantee an error bound.
The ProbeSim algorithm is computationally expensive since:
(i) the lengths of the walks can be quite long; and (ii) from
each node the algorithm may traverse to any other node several
times. To overcome these drawbacks, we truncate the length
of the walk, while generating the

√
c-walk. The limited length

and the number of iterations of the walk are set as a function of
c such that the error bound remains the same as obtained by the
ProbeSim algorithm. Moreover, with the help of the truncated√
c-walk, we can compute a reverse reachable tree to generate

a
√
c-walk starting from the source u before the iteration,

instead of generating reverse reachable trees for every node
in each iteration. As such, CrashSim substantially outperforms
the state-of-the-art algorithms on static graphs.

Furthermore, we extend our proposed CrashSim algorithm
to CrashSim-T to solve SimRank queries in temporal graphs,
which has not been studied before. When applied over tempo-
ral graphs to answer temporal queries, CrashSim has a natural
advantage since it supports partial SimRank computation,
which means it does not need to compute all single-source
SimRanks, because the candidate set for which the SimRank
needs to be computed is gradually reduced. In addition, Crash-

Sim applies two pruning strategies: (i) delta pruning which
skips the unaffected area of all the ∆ edges and (ii) difference
pruning which ignores the unchanged nodes by comparing
the related area of adjacent snapshots. The pruning strategies
obviate the need to calculate SimRank for each snapshot,
hence resulting in a further improvement over temporal graphs.

The contributions of this work are summarised as below:
• We introduce the novel CrashSim algorithm to compute

the SimRank value. At first, we present the algorithm
for static graphs in Section III. CrashSim uses the idea
of the SimRank estimators as the average probability of
two
√
c-walks with constraining length first-meeting.

• To answer temporal SimRank queries, CrashSim-T uses
two pruning rules to reduce the redundant computations
of SimRank on adjacent snapshots (Section IV).

• The extensive experiments over static and temporal
datasets verify the effectiveness and efficiency of the
proposed algorithms, demonstrating that CrashSim and
CrashSim-T substantially outperform the state-of-the-art.

The rest of the paper is organized as follows. In Section II,
we provide preliminaries and formally define Temporal Sim-
Rank Queries. After that, we design the CrashSim algorithm
in Section III, and extend it in order to solve the Temporal
SimRank Queries in Section IV. In Section V, we provide the
experimental study based on the evaluation of five datasets
and explain the results in detail. Finally, we discuss the related
work in Section VI, and conclude the work in Section VII.

II. PRELIMINARIES AND PROBLEM DEFINITION

In this section, we first introduce the SimRank in temporal
graphs, and then formally define the Temporal SimRank
Queries. The frequently used notations are given in Table I.

A. SimRank

The main idea of SimRank is that two nodes are similar
if they are related to similar nodes [7]. Specifically, given
two nodes u and v in graph G, the SimRank value sim(u, v)
between them can be expressed as:

sim(u, v) =

1, if u = v,
c

|I(u)||I(v)|
∑

x∈I(u),y∈I(v)

sim(x, y) otherwise.

where I(u) represents the set of neighbors (in-neighbor nodes
for directed graph) of u, | · | denotes the number of elements
in the set, and c ∈ [0, 1] is a decay factor typically being set
to 0.6 or 0.8.

As presented in [7], the intuition behind the similarity score
produced by SimRank is to measure the probability that two
random walks W (u) and W (v) first meet, starting from u
and v, respectively. In [18], a new type of random walk, called√
c-walk is proposed to compute an estimated SimRank value,

s′(u, v) as described below.

Definition 1 (
√
c-walk [18]). Let c denotes the decay factor

in the definition of SimRank, a
√
c-walk in G is defined such

that:
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Fig. 1: A Temporal Graph With 3 Snapshots

• In each step of the random walk, we have 1 −
√
c

probability to stop.
• For the remaining

√
c probability, one of the in-neighbors

of the current node is selected uniformly at random as
the next step.

According to the definition of
√
c-walk, Tian et al. [18]

defined s′(u, v) as the
√
c-walk W (u) starting from u meets√

c-walk W (v) starting from v, which is defined as s′(u, v) =
Pr[W (u) and W (v) meet]. Liu et al. [10] proposed an
index-free SimRank algorithm called ProbeSim, which further
defines s′(u, v) as the total probability that

√
c-walk W (u)

starting from u and
√
c-walk W (v) starting from v first

meet at each node ui, i.e., s′(u, v) = Pr[W (u) and W (v)
meet] =

∑
i Pr[W (u) and W (v) first meet at ui]. Since [10]

is the current state-of-the-art, we adopt their definition of
√
c-

walk to compute SimRank in this paper.

TABLE I: Summary of Symbol Notations

Notation Description
G(V,E) input temporal graph
Gt(V,Et) snapshot of the temporal graph at time instant t
n, m number of nodes and edges in Gt
I(u) set of in-neighbors of u
c decay factor in the definition of SimRank
ε maximum error allowed in SimRank computation
δ failure probability of a Monte Carlo algorithm
lmax limited length of

√
c-walk

sim(u, v) SimRank scores of source u and v in V
s(u, v) SimRank estimator of u and v after truncating
s′(u, v) SimRank estimator of u and v without truncating
W (u) a reverse

√
c-walk starting from u

Ω candidate node set that satisfies a certain query
condition

B. Temporal Graphs

We now present the related definitions of SimRank for
temporal graphs. A temporal graph can be expressed with
a set of snapshots, where each snapshot is the mapping of
the graph at each time instant. The formal definition of the
temporal graph is presented as below.

Definition 2 (Temporal Graph). A temporal Graph G can be
represented as a set of snapshots G= {G1, G2, ...GT }, where
Gi = (V,Ei) is the snapshot of pairwise interactions between
the nodes at time i ∈ [1, T ].

In other words, these temporal graphs only allow edge
insertion/deletion over time. Figure 1 shows a temporal graph
with 3 snapshots.

C. Temporal SimRank Queries

With the help of the definition of temporal graphs and Sim-
Rank, we define the Temporal SimRank Queries as follows.

Definition 3 (Temporal SimRank Queries). Given a temporal
graph G, a source u, a query interval [T1, Tt], a Temporal
SimRank Query aims to find the node set Ω, such that the
SimRank of u and each node v ∈ Ω, s(u, v) continuously meet
a certain query requirement during the entire query interval
[T1, Tt].

Based on the real applications, we focus on the two most
common queries over temporal graphs, namely temporal Sim-
Rank trend query and temporal SimRank thresholds query,
formally defined as below.

Definition 4 (Temporal SimRank Trend Query). Given a
temporal graph G, a source u, a query interval [T1, Tt],
a Temporal SimRank Trend Query aims to find the node
set Ω, such that the SimRank of u and each node v in Ω
is continuously increasing (or decreasing) during the entire
query interval [T1, Tt].

Definition 5 (Temporal SimRank Thresholds Query). Given
a temporal graph G, a source u, a query interval [T1, Tt],
a Temporal SimRank Thresholds Query aims to find the node
set Ω, such that the SimRank of u and each node v in Ω
is greater than a given threshold θ during the entire query
interval [T1, Tt].

The SimRank queries in temporal graphs focus on the
SimRank score sequence over a period of time, paying close
attention to its temporal features. In contrast, the SimRank
query algorithms over dynamic graphs continuously compute
the SimRank score on every change, overlooking the temporal
features.

D. Baseline

The ProbeSim algorithm is the state-of-the-art algorithm for
computing the SimRank value over static graphs, and thus
we regard it as our baseline. Since SimRank computation
has not been explored in the context of temporal graphs in
literature, we extend ProbeSim for temporal SimRank queries.
In the following we first describe the key idea of the ProbeSim
algorithm for static graphs, and then describe our modification
of this algorithm to answer the temporal SimRank queries.

The ProbeSim algorithm traverses the entire graph from
each node ui to identify whether any node v has a non-
negligible probability meeting W (ui). Specifically, the al-
gorithm performs nr

′ iterations, and in the k-th trial the
estimator sk′(u, v) is equal to the sum of the probabilities
that v first meets the path W (u, i) with different lengths
starting from u, i.e., sk

′(u, v)=
∑l
i=2 P (v,W (u, i)). The

nr
′ iterations are averaged to get the final s′(u, v), i.e.,

s′(u, v)= 1
nr
′

∑nr

k=1 sk
′(u, v). Further details of ProbeSim are

presented in Section III-A. The ProbeSim algorithm is simple
and does not use any index, but it requires generating a large



number of probing trees to identify whether W (u) can meet
every v at every step of

√
c-walk starting from u.

To solve the temporal SimRank query, we need to invoke the
ProbeSim algorithm on each snapshot to calculate st′(u, vi)
between u and each vi(vi ∈ V ) at each time instant t. Then,
according to st

′(u, vi) of each time instant and the different
temporal SimRank query requirements, we will obtain the
final node set by filtering out the nodes that do not meet the
requirements for all time snapshots. During query processing,
the number of nodes in the candidate set Ω that meet the
requirement is gradually reduced. Thus, the straightforward
extension of ProbeSim algorithm to solve the temporal Sim-
Rank queries will incur a repeated computational overhead due
to changes in the adjacent snapshots in temporal graphs. The
issue holds for both the expansion of the SimRank algorithms
for static graphs, e.g. SLING algorithm [18] and the index-
based SimRank algorithms over dynamic graphs, e.g. READS
algorithm [12]. To address this problem, we propose two
pruning rules over the already efficient CrashSim algorithm to
reduce the redundant computations of SimRank on adjacent
snapshots discussed next.

III. CRASHSIM ALGORITHM

In this section, we present our novel CrashSim algorithm,
which is used to compute an approximate SimRank score of
a node with a guaranteed error bound in a snapshot graph.
Later in Section IV we present the extension of CrashSim
for temporal graphs. Before describing the details of the
algorithm, we first provide the motivation and main intuition
behind CrashSim.

A. Motivation and Key Ideas

As mentioned in Section II-A, the Simrank score s′(u, v)
computed by the ProbeSim algorithm [10] is the total prob-
ability that two

√
c-walks, W (u) and W (v) starting from u

and v, respectively first meet at each node ui, i.e., s′(u, v) =∑
i Pr[W (u) and W (v) first meet at ui]. In the ProbeSim

algorithm, the graph traversal starts from each ui to identify
any node v that has a non-negligible probability to ‘walk’
to ui, and this process is iterated nr times to obtain results
with approximate guarantees. Hence, the ProbeSim algorithm
suffers from the following drawbacks: (i) there are many
redundant computations during the traversal, since each node
may traverse to any other node to identify the probability
several times; and (ii) the length of

√
c-walk W (u) and the

length of
√
c-walk W (v) determine the computation time of

s′(u, v), where these lengths can be quite large.
To overcome the drawbacks, we use the following key ideas

when designing the CrashSim algorithm:
• We constrain the length of

√
c-walk from u to lmax

instead of length |W (u)|. The value of lmax is set as a
function of c for a guaranteed error bound (related proofs
are provided in Section III-C).

Further in Section V, we compare our approach against both state-of-the-art
algorithms for static, and dynamic graphs.

• We compute a reverse reachable tree of source u with
the limited length of

√
c-walk, lmax. We then iteratively

generate a
√
c-walk for each node v to identify whether

it can “hit” this limited
√
c-walk path from u with a

non-negligible probability. Intuitively, this process will
significantly reduce the redundant computation, since it
traverses the reachable tree for only the source u, instead
of traversing the graph for each node ui ∈ V \u.

• Although the walk length is constrained, we are still able
to obtain SimRank estimators with the same guaranteed
error bound of the ProbeSim algorithm by adding a
constant multiple of the number of iterations (related
proofs are provided in Section III-C).

In the following, we first describe the details of the Crash-
Sim algorithm and present a running example to demonstrate
the steps. We then prove the error bound guarantee and analyze
the time complexity.

B. Algorithm Description

Given a snapshot graph G, a source u ∈ V , the candidate
node set Ω, the maximum tolerable error ε, and the failure
probability δ, the CrashSim algorithm returns approximate
SimRank scores between u and each node v ∈ Ω.

We design the CrashSim algorithm such that, for every node
v ∈ Ω, the difference between the returned SimRank and the
actual SimRank is no more than ε, and this inequality holds
for any v with at least 1 − δ probability. This error bound is
presented formally in the following:

Definition 6 (Approximation Guarantee). Given a source u
in graph G, an absolute error threshold ε, and a failure
probability δ, CrashSim returns a SimRank estimator s(u, v)
for each node v in G, such that,

|s(u, v)− sim(u, v)| ≤ ε

holds for any v with at least 1− δ probability.

The pseudo-code of the algorithm is shown in Algorithm 1.
The algorithm consists of the following steps.
• We initialize the SimRank estimators s(u, v) with the

value 0 for each v ∈ Ω\u.
• The value of the required limited length of

√
c-walk

(i.e., lmax) is calculated according to Theorem 1 (see
Section III-C) in Lines 1-2.

• We then invoke revReach algorithm (see Algorithm 2) to
construct the reverse reachable tree for u. The revReach
algorithm takes a graph G(V,E), a source node u ∈ V ,
and a ‘step length’ (here, lmax) as parameters, and
returns a matrix U , where each element (step, v) is the
probability of the

√
c-walk stopping at v with the length

of step (Line 3), where the walk starts from source u.
• Next, we compute the minimum number of iterations,
nr that is needed to obtain the required error bound,
according to Theorem 1 (Lines 4-5).

• After that, the algorithm runs nr independent trials (Line
6). For the k-th iteration, it will generate a

√
c-walk for

each ν ∈ Ω to compute the total probability of such



√
c-walk hitting (crashing) the

√
c-walk starting from u

(Lines 7-11). In details, for the node vj , we first generate
a
√
c-walk starting from the node and constrain the length

of the walk to maximum lmax (Lines 8-9). Then, for
the
√
c-walk with length i (where i ∈ [2, lmax]), the

probability of this walk “hitting” (or “crashing”) the
√
c-

walk starting from u at the i-th element of the W (vj), i.e.,
P (vj ,W (u, i)) will be added to the SimRank estimator
between u and vj (Lines 10-11). In other words, this
value is the total first-meeting probability of

√
c-walks

starting from u and vj with length i.
• After the nr trials finish, for each node v, we take the

average of nr times SimRank estimators to compute the
final SimRank estimators s (u, v) = 1/nr

∑nr

k=1 sk (u, v)
(Lines 12-13). Finally, we return S as the SimRank
estimators for each node v ∈ Ω.

revReach Algorithm. We now describe the revReach algo-
rithm that is used to generate the reverse reachable tree for the
source u. Given a snapshot graph G(V,E), the source u and
the limited length ‘step’ of

√
c-walks, the revReach returns a

matrix U , in which each element (step, v) corresponds to the
probability of the

√
c-walk starting from u and stopping at v

with length of step.
The pseudo-code of the algorithm is illustrated in Algo-

rithm 2. At first, we initialize U , which represents the prob-
abilities of the

√
c-walk starting from u stopping at different

nodes with different lengths, and set U(0, u) to 1 indicating
that the probability of the

√
c-walk stopping at u with no

length is 1 (Line 1). Then a queue Q is initialized for recording
the current node with different lengths, and the item (0, u) is
pushed into Q (Line 2). To record the parent node of the
current node in the reverse reachable tree, another queue PR
is initialized and the value −1 is pushed into it, since there
is no parent node of the source u (Line 3). After that, the
algorithm iteratively visits each element of Q (Line 4). During
the process, it first pops up the top element (tl, tu) and tpr
of Q and PR respectively (Lines 5-6). If the current length
of
√
c-walk is larger than lmax, there is no need to continue

computing the reverse reachable tree (Lines 7-8). Then for
each in-degree node v of tu, we push the in-degree nodes of
v into Q and push v into PR (Lines 10-11). After that, we set
U (tl + 1, v) to

√
c/I (v)U (tl, tu) (Line 12). Note that in this

iteration, the in-degree of tu that is equal to the parent node
of tu is ignored to avoid recomputing the probability due to
the cycle in the graph (Line 9). Finally, we obtain the matrix
U that represents the reverse reachable tree of u (Line 13).

Example 2 (A running example of the CrashSim algorithm).
We use the graph shown in Fig. 2 and Fig. 3 to illustrate the
steps of the CrashSim algorithm. For simplicity, we set the
decay factor c = 0.25 so that

√
c = 0.5. The SimRank scores

between A and any other nodes are listed in TABLE II, which
are computed by the Power Method within 10−5 error.

We first generate the reverse reachable tree U for the source
A, which is shown in Fig. 3. At the same time, the probability
of the

√
c-walk stopping at different nodes with different

Algorithm 1: CrashSim Algorithm
Input : G (V,E), u ∈ V , Ω, ε, δ
Output: S = {s(u, v)|v ∈ Ω}

1 Initialize s(u, v), for each v ∈ Ω

2 lmax ← 1+
√
c

(1−
√
c)2

(according to Theorem 1)
3 Set U ← revReach(u, lmax)

4 p←
∑lmax
k=1 (

√
c)
k−1

(1−
√
c)

5 nr ← 3c
(ε−pεt)2

log n
δ

6 for k = 1 to nr do
7 for each vj ∈ Ω do
8 Generate a

√
c-walk from vj ,

W (vj) = (v1, v2, . . . , vl), where vl = vj
9 limit l < lmax

10 for i = 2, . . . , l do
11 sk(u, vj)+ = U(i− 1,Wi (vj))

12 for each vj ∈ Ω do
13 s(u, vj) =

1

nr
sk(u, vj)

14 return S;

Algorithm 2: revReach Algorithm
Input : G (V,E), u ∈ V , lmax

Output: U
1 Initialize U , and set U(0, u) = 1
2 Initialize a queue Q, and push (0, u) into Q
3 Initialize a queue PR, and push −1 into PR
4 while Q is not empty do
5 (tl, tu) is the top element of Q, and pop it
6 tpr is the top element of PR, and pop it
7 if tl > lmax then
8 break;

9 for each v ∈ I (tu) and v 6= tpr do
10 push indegree nodes of v into Q
11 push v into PR

12 U (tl + 1, v) =

√
c

|I(v)|U (tl, tu)

13 return U ;

lengths will be computed. In particular, the algorithm first
inserts (1, B) and (1, C) to U , since they are in-neighbours
of A. The probabilities of the

√
c-walk stopping at these

node are U(1, B) = U(0, A) ·
√
c

|I(B)| = 1 · 0.5
2 = 0.25 and

U(1, C) = U(0, A) ·
√
c

|I(C)| = 1 · 0.5
3 = 0.167. Similarity,

the algorithm inserts (2, E), (2, B), (2, D) with probabilities
0.0625, 0.0417, and 0.0417 into the reverse reachable tree
U . For the next iteration, we insert (3, H), (3, A), (3, E),
(3, B) from the in-neighbours of E, B, and D into the reverse
reachable tree, and with the probabilities 0.0156, 0.0104,
0.0104, and 0.0104.

When computing the SimRank scores between A and C,
s(A,C), suppose that at the k-th trial, a reverse random walk
starting from C, i.e., W (C) = (C,D,B,A) will meet the
reverse random walk starting from A, i.e., W (A), and the
probability of them “crashing” is sk(A,C) = U(0, C) +



TABLE II: SimRank Scores With Respect To Node A

A B C D E F G H
s(A, ∗) 1.0 0.0064 0.048 0.132 0.074 0.040 0.048 0.0064

A
B

C ED

F G H

Fig. 2: Sample Graph

A

B C

E B D

H A E B

Level 0

Level 1

Level 2

Level 3

Fig. 3: Reverse Reachable Tree

U(1, D) + U(2, B) + U(3, A) = 0 + 0 + 0.0417 + 0.0104 =
0.0521. After nr iterations, the CrashSim algorithm will get
the SimRank estimator between A and C.

C. Theoretical Analysis

Correctness and Error Bound Guarantee. We now show
that CrashSim indeed gives an estimation s(u, v) with provable
error guarantees to the SimRank scores sim(u, v) for each
v ∈ Ω. To prove the error guarantee, we use the definition of
first-meeting probability presented in [10].

Definition 7 (First-meeting Probability). Given a source u
and its reverse random walk W (u, i) with length i, and a
node v ∈ Ω, v 6= u, the first-meeting probability of v and the
reverse reachable walk W (u, i) is defined as:

P (v,W (u, i)) = Pr
W (v)

[vi = ui, vi−1 6= ui−1, ..., v1 6= u1],

where W (v) = (v = v1, v2, · · ·, vi) is a reverse random walk
starting from v.

The following theorem and lemma prove that an absolute
error still holds with a high probability after constraining the
length of

√
c-walks.

Theorem 1. For any node v ∈ Ω, sim(u, v) and its
estimator s(u, v) satisfies Pr {|sim(u, v)− s(u, v)| ≤ ε} ≥
1 − δ, where s(u, v)= 1

nr

∑nr

k=1

∑min(l,lmax)
i=2 P (v,W (u, i)),

lmax = 1+
√
c

(1−
√
c)2

, nr = 3c
(ε−pεt)2

log n
δ , εt = (

√
c)lmax ,

p=
∑lmax

k=1 (
√
c)
k−1

(1−
√
c).

For simplicity, we split the Theorem 1 into Lemma 1,
Lemma 2, and Lemma 3 and prove them separately.

Lemma 1. The upper bound of the length l of
√
c-walk has at

least p probability being lmax = 1+
√
c

(1−
√
c)2

, i.e., Pr(l ≤ lmax) =

p, where p=
∑lmax

k=1 (
√
c)
k−1

(1−
√
c).

Proof. This lemma defines an upper bound of the length
of
√
c-walk with p probability according to the property of

geometric distribution and Central Limit Theorems. Due to
the principle of

√
c-walk, each step has the probability of

(1 −
√
c) to stop the random walk, so the length l of

√
c-

walk obeys the geometric distribution, and its probability
distribution is P (l = k) = (1 −

√
c)(
√
c)k−1, denoted as

l ∼ GE(1−
√
c). Its expectation is El = 1

1−
√
c
, the variance

is Dl = 1−(1−
√
c)

(1−
√
c)2

=
√
c

(1−
√
c)2

. Due to the Central Limit The-
orems and the Law of Large Numbers, l̄ ∼ N(El,Dl), and
P (El− 2 ·

√
Dl√
n
≤ l ≤ El+ 2 ·

√
Dl√
n

) ≥ 0.95, thus we set lmax

to El+ 2Dl = 1+
√
c

(1−
√
c)2

. With the help of cumulative function
of geometric distribution, we can calculate the probability of
l ≤ lmax, i.e., Pr(l ≤ lmax)=

∑lmax

k=1 (
√
c)
k−1

(1−
√
c).

Lemma 2. Let s′(u, v) denotes the SimRank estimator be-
tween u and v when the length of l is not truncated,
i.e., s′(u, v)= 1

nr

∑nr

k=1

∑l
i=2 P (v,W (u, i)). Then s′(u, v) −

s(u, v) = pεt, where εt = (
√
c)lmax .

Proof. This lemma defines the SimRank estimator error with
and without truncating the length of

√
c-walk. To prove the

lemma, we discuss the relationship between l and lmax. There
are two cases: (a) when l > lmax, s′(u, v) − s(u, v) = εt;
and (b) when l ≤ lmax, s′(u, v) − s(u, v) = 0. Since the
probability that l is greater than lmax is p, then for any l,
s′(u, v)− s(u, v) = pεt.

We first prove the case (a). Let sk
′(u, v) denotes the

SimRank estimator between u and v in the k-th iteration, and
sk(u, v) denotes the SimRank estimator between u and v after
truncating the length l of the

√
c-walk in the k-th iteration. The

equation can be rewritten as,

sk
′(u, v)− sk(u, v) < εt = (

√
c)lmax

when l > lmax, where sk
′(u, v)=

∑l
j=2 P (v,W (u, j)),

sk(u, v)=
∑lmax

j=2 P (v,W (u, j)). So if∑l

j=2
P (v,W (u, j))−

∑lmax

j=2
P (v,W (u, j)) < (

√
c)lmax

can be proved, then the Lemma 1.(a) holds. Obviously,

lmax+1∑
j=2

P (v,W (u, j)) =

lmax∑
j=2

P (v,W (u, j))(1+
∑

y1∈I(v)

√
c

|I(y1)|
),

l∑
j=2

P (v,W (u, j)) =

lmax∑
j=2

P (v,W (u, j))(1+
∑

y1∈I(v)

√
c

|I(y1)|

·
∑

y2∈I(y2)

√
c

|I(y2)|
· · ·

∑
yl−lmax∈I(yl−lmax )

√
c

|I(yl−lmax
)|

),

when in the l-th iteration. Because of c ∈ [0, 1],∑
y1∈I(v)

√
c

|I(y1)|
· · ·

∑
yl−lmax∈I(yl−lmax−1)

√
c

|I(yl−lmax
)|
< 1,

Based on these formulas, the difference satisfies that
l∑

j=2

P (v,W (u, j))−
lmax∑
j=2

P (v,W (u, j)) <

lmax∑
j=2

P (v,W (u, j)).



Because the probability satisfies that∑lmax

j=2
P (v,W (u, j)) < (

√
c)lmax ,

We get that

sk
′(u, v)− sk(u, v) < εt = (

√
c)lmax .

We next prove the case (b). When l ≤ lmax, then l =
min(l, lmax). Since s′(u, v)= 1

nr

∑nr

k=1

∑l
i=2 P (v,W (u, i)),

the estimator s(u, v)= 1
nr

∑nr

k=1

∑min(l,lmax)
i=2 P (v,W (u, i)),

then s′(u, v)− s(u, v) = 0.

Lemma 3. After constraining the length of
√
c-walk, it is

necessary to iterate at least nr = 3c
(ε−pεt)2

log n
δ times, to

ensure the absolute error between estimator s′(u, v) and
sim(u, v) has an upper bound with 1− δ probability.

The proof of Lemma 3 needs the help of the definition of
the Chernoff bound.

Lemma 4. (Chernoff bound [3]) For any set {xi} (i ∈
[1, N ]) i.i.d random variables with mean µ and xi ∈ [0, 1],

Pr{
∣∣∣∣ N∑
i=1

xi −N · µ
∣∣∣∣ ≥ N · ε} ≤ exp(− N ·ε2

2
3 ε+2µ

)
.

Proof. Lemma 3 defines the minimum number of iterations
that guarantees the error less than ε with at least 1 − δ.
[10] has proved that when the length of the

√
c-walk is not

truncated, in order to make the error of the estimated value
s′(u, v) and the actual value sim(u, v) have an upper bound
with high probability, at least nr = 3c

ε2 log n
δ iterations are

required. Meantime, s′(u, v) is the average of each iterator,
i.e., Pr |∀v ∈ V, |s′(u, v)− sim(u, v)| ≤ ε| ≥ 1 − δ, where
s′(u, v)= 1

nr

∑nr

i=1 s
′
k(u, v).

According to Lemma 2, s′(u, v)− s(u, v) = pεt. To ensure
the probability that the error between s(u, v) and sim(u, v)
is no greater than ε is 1− δ, it is necessary to ensure that the
probability of the error between s′(u, v) and sim(u, v) is no
greater than ε− pεt is 1− δ.

The SimRank estimators sk(u, v) and sk
′(u, v) are values

in [0, 1] because of the original definition of SimRank, and
s′(u, v)= 1

nr

∑nr

i=1 s
′
k(u, v). Therefore, the Chernoff bound

can be applied.

Pr[|s′(u, v)−sim(u, v)| ≥ (ε−pεt)] ≤ exp

(
−nr · (ε− pεt)

2

3s(u, v)

)
Let nr = 3c

(ε−pεt)2
log n

δ and notice sim(u, v) < c, we can
get,

Pr[|s(u, v)− sim(u, v)| ≥ (ε− pεt)] ≤ exp(−log
n

δ
) =

δ

n

Combining the lower bounds of all nodes together, i.e.,
Pr[∀v ∈ V, |s′(u, v) − sim(u, v)| ≥ (ε − pεt)] ≤ δ, so
Pr[∀v ∈ V, |s(u, v)− sim(u, v)| ≥ ε] ≤ δ.

Time Complexity. The CrashSim algorithm first invokes the
revReach algorithm to compute the probability of the

√
c-walk

starting from u stopping at each node with different lengths, in

which the worst case of the revReach algorithm is to traverse
each edge only once. Thus, the complexity of the revReach
algorithm is O(m), where m is the number of edges.

Then the CrashSim algorithm has nr iterations, and in the
k-th trial, it will visit each node in the candidate set Ω and
provide the total probability of “crashing” the

√
c-walk starting

from u and each node v ∈ Ω with the maximum length lmax.
The time complexity of this process is O(|Ω| ·

∑lmax

i=1 i) =
O(n · l2max), where |Ω| is the number of nodes in the candidate
node set Ω, and lmax is the limited length of

√
c-walks. Note

that, the limited length of
√
c-walks lmax is 1+

√
c

(1−
√
c)2

, which
is a constant. Summing up for the nr iterations, the time
complexity of the iteration process is O(nr · |Ω|). Overall,
the time complexity of the CrashSim algorithm is bounded by
O(m+ nr · |Ω|) = O(m+ 3c

(ε−pεt)2
log n

δ · |Ω|).

IV. CRASHSIM-T FOR TEMPORAL SIMRANK QUERIES

When solving the temporal SimRank queries, CrashSim
employs two pruning rules discussed in the following. We refer
to the CrashSim algorithm with the pruning rules as CrashSim-
T and describe it now in more details. Finally, we analyze the
time complexity and correctness of the CrashSim-T algorithm.

A. Rationale

Recall that, the aim of a Temporal SimRank Query is to find
the node set Ω, such that the SimRank of u and each node
v ∈ Ω, s(u, v) continuously meet a certain query requirement
during the entire query interval. As mentioned in Section I,
there are two opportunities to further improve the efficiency
of CrashSim for temporal SimRank queries. (i) Due to small
changes between adjacent snapshots in temporal graphs, it
is unnecessary to calculate the SimRank between u and the
candidate set Ω at each time instant. (ii) Since a node must
meet the query requirements at every time instant in order to be
included in Ω, the size of node set Ω can only gradually reduce
over time. Hence, it is unnecessary to compute the SimRank
of all the nodes (i.e., use single-source SimRank computation),
since we may only need the SimRank estimators of the source
u and a partial set of nodes.

If we extend the static SimRank computation algorithms
(e.g., ProbeSim) to solve the temporal SimRank queries, they
will lose both opportunities, since they need to recompute the
single-source SimRank estimators at every snapshot. If we
however extend the index-based SimRank methods, such as
READS [12], the opportunity (i) may lead to a large memory
footprint to update the index, and the method still ignores
opportunity (ii). The memory footprint will become critical in
large graphs or for a long duration of the query interval.

Based on these, we extend the CrashSim algorithm to solve
the temporal SimRank queries, since it naturally supports the
computation of the SimRank of the source u and a partial set
of nodes. Specifically, one of the inputs of CrashSim is the
candidate node set Ω. When Ω is the entire set of nodes in
a graph, the algorithm computes the single-source SimRank
like other algorithms, but when Ω is given as particular nodes
of the graph (i.e., partial set of nodes), CrashSim computes



the SimRank between the source u and only that partial set
instead of the entire graph. This is a key difference between
CrashSim and other single-source SimRank algorithms [10].

We now define two pruning rules, namely delta pruning
and difference pruning to take the full advantage of the two
discussed opportunities.

Delta Pruning. Let Gt, Gt+1 be the t-th and (t + 1)-th
snapshots of the temporal graph G, respectively. Then ∆ =
Gt+1 − Gt = {±(x, y)|x, y ∈ V }. For each changed edge
x→ y, we can define the “Affected Area”.

Theorem 2 (Affected Area). The affected area of a changed
edge x → y consists of: (i) the altered nodes in the reverse
reachable tree of u, and (ii) lmax − 1 length reachable nodes
of y.

Proof. Recall that s(u, v) =
∑
i Pr[W (u) and W (v) first meet

at ui], and in CrashSim, s(u, v) is computed in two steps,
computing the reverse reachable tree of u and performing nr
times random

√
c-walk starting from v. For the first part, the

SimRank estimators of u and the altered nodes in the reverse
reachable tree of u must be changed. For the second part, the
SimRank estimators of u and lmax−1 length reachable nodes
of y will be altered. Suppose there is a reachable path starting
from y with the maximum length of lmax, it is obvious that
ylmax

are not affected by adding the edge x → y, since the√
c-walk with maximum length of lmax cannot reach x.

lmax︷ ︸︸ ︷
x→ y → y1 → · · · → ylmax−1 → ylmax︸ ︷︷ ︸

lmax+1

The main idea of delta pruning is thus to reduce re-
computation by ignoring the nodes of an unaffected area.

Next, we analyze the time complexity of computing the
affected area to understand when delta pruning is efficient. The
complexity of computing the affected area for a single-changed
edge is similar to that of revReach algorithm, i.e., O(|E(Ω)|)
where E(Ω) are the edges between nodes in Ω, and for |E(∆)|
changing edges, the complexity becomes O(|E(Ω)| · |E(∆)|).
Recall that the complexity of CrashSim is O(|Ω|·nr), thus only
when |E(∆)| < |Ω|·nr

|E(Ω)| , the delta pruning rule will speedup
the process. With the theorem of the affected area and this
condition, we can formally define the property of the delta
pruning rule as follows.

Property 1 (Delta Pruning). Given the changed edges between
adjacent snapshots of temporal graphs, i.e., ∆ = Gt+1 −Gt,
when the number of changed edges satisfy |E(∆)| < |Ω|·nr

|E(Ω)| ,
the unaffected area of the candidate node set Ω can be
exempted from computing SimRank estimators for instant t+1.

Example 3 (A running example of Delta Pruning). Suppose
that lmax is 2. The reverse reachable tree of A is shown in
Fig. 4(a). Consider Fig. 1(a) and (b), if we delete the edge
H → F , the reverse reachable tree of A (part i of the affected
area) will not be altered. Meanwhile, since F has no out-
neighbours, the lmax − 1 length reachable nodes of F is F

A

B C

E B D

(a)

E

B

A D

H

(b)

Fig. 4: Reverse Reachable Tree of A and E

itself. Therefore, only the SimRank score of A and F will be
changed after deleting the edge H → F .

Difference Pruning. Before presenting the difference prun-
ing, we first introduce the notion of related area of the
SimRank estimator s(u, v).

Definition 8 (Related Area). s(u, v) is related to the lmax
length reverse reachable tree of u and v.

Proof. Recall the definition of SimRank based on
√
c-walk,

s(u, v) = Pr[W (u) and W (v) meet]

=
∑
i

Pr[W (u) and W (v) first meet at ui].

It is obvious that s(u, v) depends on W (u) and W (v). In
CrashSim, we have proven that we can gain reliable SimRank
estimators after constraining the length of

√
c-walk. We also

use the reverse reachable tree to list all the reverse reachable
paths starting from u, i.e., W (u) and record the probability of
the random walk stopping at different nodes ui with different
lengths. Similarly, W (v) can be expressed by the reverse
reachable tree of v. As a result, s(u, v) is related to the reverse
reachable tree of u and v.

Thus the pruning rule based on the related area compares
the reverse reachable tree of u and each node in Ω. If the
reverse reachable tree of u is stable, then we can filter out
those nodes whose reverse reachable tree is unchanged.

Next, we analyze the time complexity of computing the
related area to understand when the difference pruning is
effective. The complexity of computing the related area of
a single node is similar to that of the revReach algorithm,
i.e., O(|E(Ω)|). The complexity of computing the related area
of each node in the candidate set Ω is thus O(|Ω| · |E(Ω)|).
Recall that the complexity of CrashSim is O(|Ω| · nr), thus
when |E(Ω)| < nr, the difference pruning will speedup the
computational process. Now we formally define the property
of difference pruning.

Property 2 (Difference Pruning). Given snapshots Gt and
Gt−1, if the related area of u is stable and |E(Ω)| < nr, the
nodes whose reverse reachable trees are unchanged can be
exempted from computing SimRank estimators for instant t.

Example 4 (A running example of Difference Pruning).
Suppose that the candidate node set Ω is {E}, lmax is 2 and



the reverse reachable trees of A and E are shown in Fig. 4(a)
and (b). Consider Fig. 1(b) and (c), if we add an edge G→ F ,
the reverse reachable trees of A and E will not be changed
in the adjacent snapshots, thus there is no need to re-compute
the SimRank value of A and E.

B. CrashSim-T Algorithm

The main idea behind CrashSim-T is to traverse the graph
for all time snapshots and during each iteration we first check
whether the conditions of delta pruning and difference pruning
are satisfied. If so, we can disregard these nodes as part of the
candidate node set Ω for the current time instant. Then, we
invoke the CrashSim algorithm to compute the SimRank score
of u and residual nodes. Finally, according to different query
requirements (such as threshold or trend query) we can filter
out unsatisfied nodes that do not meet the requirements.

Algorithm 3: CrashSim-T Algorithm
input : G(V,E), u ∈ V , query interval [T1, Tt], ε, δ
output: Ω

1 Ω← V
2 S1 = CrashSim(GT1 , u,Ω, ε, δ)
3 for each Ti ∈ [T2, Tt] do
4 Ω′ = Ω
5 Ui = revReach(Gti(V,EΩ), u)
6 Ui−1 = revReach(Gti−1(V,EΩ), u)
7 if Ui = Ui− 1 then
8 ∆ = GTi −GTi−1

9 if |E(∆)| < |Ω|·nr

|E(Ω)| then
10 A = ∅
11 for each x→ y ∈ E(∆) do
12 A+ = revReach(Gti(V,EΩ), y)

13 Ω′ = Ω−A
14 if |E(Ω)| < nr then
15 for each vj ∈ Ω do
16 Ri = revReach(Gti(V,EΩ), vj)
17 Ri−1 = revReach(Gti−1(V,EΩ), vj)
18 if Ri = Ri−1 then
19 Ω′ = Ω− vj

20 Si = CrashSim(GTi , u,Ω
′)

21 for each s(u, v) ∈ Si do
22 delete the unsatisfied node from Ω

23 return Ω;

We now describe the details of the CrashSim-T algorithm.
Given a temporal graph G(V,E), a source u ∈ V , a query time
interval [T1, Tt], a sampling error parameter ε and a failure
probability δ, the algorithm returns a candidate node set Ω,
in which each node meets the query requirement during the
entire query interval.

The pseudo-code for the CrashSim-T algorithm is illustrated
in Algorithm 3. At first, we initialize the candidate set Ω to
the entire set of nodes (Line 1). We then invoke CrashSim
to compute the SimRank of u and each node at T1 (Line 2).
After that, the algorithm runs for all time instants in [T2, Tt]
(Line 3). For the i-th trial, the algorithm first initializes Ω′ to

record the residual node set for which we need to compute
the SimRank scores at current query time instant (Line 4).
Then, the algorithm compares the reverse reachable trees of u
between the snapshots Ti and Ti−1 (Lines 5-6). If the reverse
reachable trees of u between the adjacent snapshots are the
same, then there is a possibility to meet delta pruning and
difference pruning conditions. Next, we explore the condition
of delta pruning (Lines 7-13). During this process, we make
∆ to record the difference between the adjacent snapshots
(Line 8), and then explore whether the number of changed
edges meets the condition of delta pruning (Line 9). If so, we
initialize a set A to record the nodes in the affected area (Line
10). For each edge x→ y, we invoke an algorithm similar to
revReach to compute the affected area of y (note that revReach
computes the reverse reachable tree for y, but we just need the
reverse reachable nodes) (Lines 11-12). After the iteration is
finished, the residual node set Ω′ is updated (Line 13).

Similarly, we check the condition of difference pruning
(Lines 14-19). If the number of edges in Ω, i.e., |E(Ω)| is
less than nr, the difference pruning will be applied (Line 14).
For each node vj in Ω, we compute the reverse reachable tree
of vj for adjacent snapshots, i.e., Gt and Gt−1 (Lines 16-17).
If they are the same, we do not need to compute the SimRank
of u and vj since the value is the same as the previous one,
thus we delete it from Ω′ (Lines 18-19).

After that, we use CrashSim to compute the SimRank score
of u and nodes in Ω′, since Ω′ records the nodes for which we
need to compute SimRank scores (Line 20). Finally, according
to different query requirements, such as threshold and trend,
we delete the unsatisfied nodes from Ω (Line 21-22). After
iterating this process over all time instants, we get the final
candidate node set Ω, in which each node satisfies the query
requirements for the entire query time interval.

C. Theoretical Analysis

Time Complexity. The algorithm is invoked over all time
instants, performing t iterations in each instant. In each itera-
tion, CrashSim is invoked, resulting in the time complexity of
O(nr ·|Ω|), where nr is the number of iterations and |Ω| is the
number of nodes in the candidate node set at time Ti. Since
redundant computations are removed using the pruning rules,
the worst case time complexity of CrashSim-T is O(t·nr ·|Ω|).

Correctness. We have proven that the accuracy of the
CrashSim algorithm has a lower bound through Theorem 1,
which is based on the

√
c-walks with the constrained length.

The pruning rules are based on the
√
c-walk with the limited

length as well. Thus CrashSim-T does not introduce any ad-
ditional error and still has provable approximation guarantees
of the SimRank estimators for every snapshot.

V. EXPERIMENTAL EVALUATION

This section experimentally evaluates the proposed algo-
rithms, i.e., CrashSim and CrashSim-T, against the state-of-
the-art SimRank methods. We conduct all the experiments on
a Windows 10 machine with a 3.4GHz CPU and 8GB memory,
and all of the algorithms are implemented in C++.



Datasets. To evaluate the performance of the proposed algo-
rithms, we use five real datasets from Stanford Large Network
Dataset Collection, namely AS-733, AS-Caidi, Wiki-Vote,
HepTh, and HepPh. The datasets AS-733 and AS-Caidi are
originally temporal graph datasets that can be used directly.
Wiki-Vote, HepTh, and HepPh however do not contain tem-
poral information, hence we generate the synthetic datasets
with 100 snapshots for each. The detailed information about
the datasets can be found in Table III, showing the type of
graphs, the number of nodes (n), the number of edges (m),
and the number of time snapshots (t).

TABLE III: Real and Synthetic Datasets

Datasets Type n m t
AS-733 Undirected 6,474 13,233 733
AS-Caidi Directed 26,475 106,762 122
Wiki-Vote Directed 7,155 103,689 100
HepTh Undirected 9,877 25,998 100
HepPh Directed 34,546 421,578 100

Comparison baselines. For a single snapshot, we compare
CrashSim against SLING algorithm [18], ProbeSim algo-
rithm [10], and READS algorithm [12]. The SLING algorithm
is the state-of-the-art index-based algorithm for computing the
single-source SimRank for static graphs; ProbeSim is the state-
of-the-art index-free algorithm that naturally supports static
and dynamic graphs; and READS is the state-of-the-art index-
based single-source SimRank for dynamic graphs. Consistent
with the previous study, we set the decay factor c of the
SimRank algorithm to 0.6 [7]. For SLING and ProbeSim
algorithms, we set their maximum error ε = 0.025. For
READS algorithm, we set r = 100, rq = 10, and t = 10. As
for the proposed CrashSim algorithm, we vary the parameter
ε from 0.0125, 0.025, 0.05, and 0.1 which corresponds to the
maximum absolute error allowed in the SimRank computation.
By varying the value of this parameter, we can examine
the trade-off between query efficiency and accuracy of the
CrashSim algorithm. The ground-truth results on each dataset
are computed by the Power Method [7] with 55 iterations.

For the temporal SimRank queries, we compare CrashSim-
T against SLING, ProbeSim, and READS algorithms. Since
they are not designed to answer temporal SimRank queries,
they need to be modified (see Section IV-A for more details).
The parameters of SLING, ProbeSim, and READS algorithms
are the same as that of a single snapshot, but the parameter
ε used in the CrashSim algorithm is set to 0.025, which is
similar to that of the ProbeSim algorithm.
Setting and metrics. For each single-source SimRank compu-
tation in a snapshot from source u, we define the maximum er-
ror ME as the maximum difference between the ground-truth
results and the values returned by each algorithm on a single
snapshot, that is, ME = max |s(u, v)− s̃(u, v)| (v ∈ V ).

To evaluate the effectiveness of CrashSim-T on the temporal
SimRank queries, we define a precision metric to express
the accuracy of the query results. Specifically, precision =

http://snap.stanford.edu/data/index.html
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Fig. 5: Response time and Max Error (ME) when computing
single-source SimRank on the static datasets

v(k1)∩v(k2)
max(k1,k2) , where v(k1) represents the query result set calcu-

lated by the power method, k1 represents the number of nodes
in the result set calculated by this method, v(k2) represents
the set of query results obtained by our algorithm and other
algorithms, and k2 represents the number of nodes in the result
set for those algorithms.

To further evaluate the efficiency of CrashSim-T on the
temporal SimRank queries, we use synthetic datasets that are
extracted from the AS-733 dataset. We measure the total time
duration of CrashSim-T and the competitors when answering
the temporal SimRank trend query over 100, 200, 500, 700
snapshots separately.

A. Evaluation over static graphs

In the first set of experiments, we randomly generate single-
source SimRank computation on a single snapshot of each
dataset for 100 repetitions and measure the average time
duration and maximum error of each method over the static
graphs. As shown in Fig. 5, the time increases gradually
for CrashSim but the maximum absolute error ME declines
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Fig. 6: Precision of the different algorithms when answering
Temporal Trend and Threshold Queries
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Fig. 7: The impact of the query interval on the response time
of the algorithms

rapidly when the parameter ε of CrashSim algorithm varies
between 0.1 (shown on the left hand side), 0.05, 0.025 to
0.0125 (shown on the right hand side). We also observe that
CrashSim with ε varying from 0.1, 0.05 to 0.025 has better
performance (faster response time) than ProbeSim, SLING
and READS algorithms. This is consistent with the fact that
CrashSim has the lowest time complexity O(n · nr). Note
that, the response time of SLING and READS reported here
consists of indexing time and computational time.

As for the maximum absolute error, CrashSim with ε
0.025 and 0.0125 has lower ME than ProbeSim, SLING and
READS algorithms. Theorem 1 has proved that CrashSim can

obtain the same maximum error bound as ProbeSim algorithm
by increasing the constant multiple numbers of iteration. The
SLING algorithm also has an additive error bound. Since the
READS algorithm has no maximum error guarantee, all three
CrashSim, ProbeSim and SLING algorithms have better ME
than the READS algorithm.

B. Evaluation over temporal graphs

Our second set of experiments shown in Fig. 6(a) and (b)
evaluates the accuracy of different algorithms when answering
the temporal SimRank trend and threshold queries. Among the
competitors, CrashSim-T provides the highest precision since
it has the lowest ME in a single snapshot.

Our last set of experiments focuses on the impact that the
query duration has on the efficiency of CrashSim-T and the
other algorithms. We select 100, 200, 500, 700 snapshots of
the AS-733 dataset as the test datasets, and compare the total
running time of each solution when answering the temporal
trend SimRank query. Note that we have performed the same
experiment over the temporal threshold SimRank query as
well. The results are omitted due to lack of space, nonetheless,
they are consistent with the results for the trend query (with
less than 5% of discrepancy).

From Fig. 7. it can be observed that the response time of
all algorithms increases with the increase in the query interval
duration. The total response time of ProbeSim and SLING
algorithms increases linearly since both of them re-compute
the SimRank value at every snapshots. The READS algorithm
needs to update the index and re-compute the SimRank scores
at every edge or node update. CrashSim-T has the fastest
response time during the entire query interval, since it has the
lowest time complexity on a single snapshot, and reduces the
unnecessary computation over the adjacent snapshots by em-
ploying the pruning strategies. When the number of snapshots
increases, the benefit of CrashSim-T becomes more apparent,
since the number of nodes in the candidate set that satisfy the
query decreases over time.

VI. RELATED WORK

SimRank computation in Static Graphs. Jeh and Widom [7]
first presented SimRank to measure the similarity of two nodes
in a graph, and proposed a recursive deterministic method to
compute the SimRank scores of all pairs of nodes. Lizorkin et
al. [11] propose a method to estimate the accuracy of SimRank
scores and find the minimum number of iterations required to
achieve a desired accuracy.

Another method for SimRank computation is linearization
method [5], [6], [8], [24], [26]. Fujiwara et al. [5] propose
a non-iterative method to calculate the single-pair SimRank
based on the Sylvester equation. Kusumoto et al. [8] propose
an effective algorithm for single-source SimRank top-k query;
the approach cannot however guarantee the ε worst-case error.
To solve the problem, Yu et al. [26] propose an algorithm
that does not require pre-computation, and can guarantee ε
worst-case error, however the computational complexity of the
approach is high.



The Monte Carlo method [4], [10], [13], [17], [18] can also
be used to compute the SimRank scores. Fogaras et al. [4] first
define SimRank between two nodes as the expectation of the
encounter of the reverse random walks starting from these two
nodes. Pei et al. [13] propose a single-source SimRank Top-k
query algorithm whose main idea is to search for candidate
sets of neighbors and rank them, instead of scanning through
the entire graph. Tian et al. [18] propose SLING, an index-
based algorithm for answering single-source SimRank queries
with ε worst-case error. To the best of our knowledge, the
ProbeSim algorithm proposed in [10] is the state-of-art index-
free single-source SimRank algorithm that provides a non-
trivial theoretical guarantee (details described in Section II-D).
SimRank Computation in Dynamic Graphs. Li et al. [9]
first studied the all-pair SimRank computation on dynamic
graphs, with the main idea to factorize the backward transition
matrix. Yu et al. [25] propose a fast incremental algorithm
for all-pair SimRank by defining the update matrix of every
link change using the rank-one Sylvester equation. Shao et
al. [16] propose TSF schema for SimRank-based search,
wherein a random walk of a set of one-way graphs is indexed.
Wong et al. [12] present READS, an index schema based
on unidirectional random walk to compute the top-k single-
source SimRank over dynamic graphs. Wang et al. [19]
propose a novel local push based algorithm to compute all-
pairs SimRank in dynamic graphs.

Different from the afore-mentioned approaches, CrashSim
not only efficiently computes the single-source SimRank with
provable approximation guarantees, but naturally supports the
SimRank queries in temporal graphs. Temporal graphs have
become an advanced research hotspot in recent years [2]. Wu
et al. [21] study the shortest path in temporal graphs, and
formally defined the minimum temporal graphs. The problem
of mining a set of diversified temporal subgraph patterns
from a temporal graph is studied in [22]. A fast incremental
approach for continuous frequent subgraph mining problem on
a single large evolving graph is proposed in [1]. Such works
however focus on orthogonal problems such as calculating the
shortest path, and density subgraph, and not SimRank.

VII. CONCLUSION

In this work, we propose CrashSim, an index-free algorithm
for single-source and partial SimRank computation in static
graphs. The main intuition behind CrashSim is to regard the
SimRank estimators as the average probability of two

√
c-

walks with constraining length first meeting. To support the
temporal SimRank queries over temporal graphs, we introduce
CrashSim-T – an extension to CrashSim that employs two
pruning strategies (delta and difference pruning) that sub-
stantially improve the algorithm’s performance over tempo-
ral graphs. Our experiments show that both CrashSim and
CrashSim-T algorithms outperform the state-of-art algorithms
significantly in terms of response time and precision.

Acknowledgment. Mo Li is supported by the Chinese
Scholarship Council. This work is partially supported by
the ARC Linkage Projects (No. LP180100750), the National

Natural Science Foundation of of China (Nos. 61472069
and 61402089), China Postdoctoral Science Foundation (Nos.
2019T120216 and 2018M641705), the Fundamental Re-
search Funds for the Central Universities (N180408019 and
N180101028), the CETC Joint Fund, the Open Program of
Neusoft Institution of Intelligent Healthcare Technology, Co.
Ltd. (No. NRIHTOP1802), and the fund of Acoustics Science
and Technology Laboratory.

REFERENCES

[1] Abdelhamid, E., Canim, M., Sadoghi, M., et al: Incremental frequent
subgraph mining on large evolving graphs. TKDE pp. 2710–2723 (2017)

[2] Aggarwal, C., Subbian, K.: Evolutionary network analysis: A survey.
ACM Computing Surveys pp. 1–36 (2014)

[3] Chung, F.R.K., Lu, L.: Concentration inequalities and martingale in-
equalities: A survey. Internet Mathematics 3(1), 79–127 (2006)
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