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Abstract—Multi-armed bandits achieve excellent long-term
performance in practice and sublinear cumulative regret in
theory. However a real-world limitation of bandit learning is poor
performance in early rounds due to the need for exploration—
a phenomenon known as the cold-start problem. While this
limitation may be necessary in the classical stochastic setting,
in practice where “pre-training” data or knowledge is available,
it is natural to attempt to “warm start” bandit learners. This
paper provides a theoretical treatment of warm-start contextual
bandit learning, adopting Linear Thompson Sampling as a
principled framework for flexibly transferring domain knowledge
as might be captured by bandit learning in a prior related task,
a supervised pre-trained Bayesian posterior, or domain expert
knowledge. Under standard conditions we prove a general regret
bound. We then apply our warm-start algorithmic technique to
other common bandit learners, the ε-greedy and upper-confidence
bound contextual learners. Our suite of warm-start learners
are evaluated in experiments with both artificial and real-world
datasets, including a motivating task of tuning a commercial
database.

Index Terms—multi-armed bandits, warm-start, pre-training

I. INTRODUCTION

Multi-armed bandits have undergone a renaissance in ma-
chine learning research [1], [2] with a range of deep theoretical
results discovered, while applications to real-world sequen-
tial decision making under uncertainty abound, ranging from
news [3] and movie recommendation [4], to crowd sourcing [5]
and self-driving databases [6], [7]. The relative simplicity of
the stochastic bandit setting, as compared to more general
POMDPs (partially observable Markov decision processes),
regularly admits regret analysis where bandit learners enjoy
bounded cumulative regret—the gap between a learner’s cu-
mulative reward to time T and the cumulative reward possible
with a fixed but optimal-with-hindsight policy. While many
bandit learners are celebrated for attaining sublinear regret or
average regret converging to zero, such long-term performance
goals say little about the short-term performance of today’s
popular bandit algorithms.

Indeed the bandit setting is well known to be the simplest
Markov decision process to require balancing of exploration—
attempting infrequent actions in case of higher-than-expected
rewards—with exploitation—greedy selection of actions that
so far appear fruitful. Even in the stochastic setting, where
rewards are drawn from stationary (context conditional) dis-
tributions, the underlying distributions are unknown and con-
sidered adversarially chosen. In other words, there’s no free

lunch (in the worst case) without significant exploration in
early rounds.

The relatively poor early round performance of bandit
learners is known as the cold start problem, and can be costly
in high-stakes domains. [3] suggested that bandit learners be
warm started or pre-trained somehow prior to such deploy-
ment, in the context of online media recommendation and
advertising where poor performance leads to user dissatis-
faction and financial loss. However little systematic research
has explored the cold start problem. Intuitively, warm start
is related to transfer learning [8] and domain adaptation [9]
while [10] modify any bandit policy to make use of pre-
training from (batch) supervised learning via manipulation
of its rewards weight and importance sampling. This paper
advocates for Thompson Sampling (TS) [11] as a natural
framework for warm start bandits. Although the prior used
in Thompson Sampling can be misspecified, as discussed by
[12], our extension to the Linear TS contextual bandit not only
affords more flexible forms of warm start, but quantifies prior
uncertainty, and admits regret analysis. Furthermore, this idea
can be extended into other bandit algorithms, such as ε-greedy
and LinUCB.

Flexibility in warm start is paramount, as not all settings
requiring warm start will necessarily admit prior supervised
learning as assumed previously [10]. Indeed, bandits are typi-
cally motivated when there is an absence of direct supervision,
and only indirect rewards are available. Our framework offers
unprecedented flexibility. We advocate that prior knowledge
could come from: bandit learning on a previous, related
task; domain expert knowledge or knowledge extracted from
a rule-based, non-adaptive baseline system; or indeed prior
supervised learning.

We introduce a new motivation for warm start bandits
from the database systems domain. Database indices, a data
structure used by database management systems to execute
queries more rapidly, may be formed on any combination of
table columns. Unfortunately the best choice of index depends
on unknown query workloads and potentially unstable system
performance. Offline solutions to index selection have been
the foundations of the automated tools provided by database
vendors [13], [14], [15]. Recognising that database adminis-
trators cannot practically foresee future database loads, online
solutions, where the choice of the representative workload
and the cost-benefit analysis of materialising a configuration
are automated, have been proposed [16], [17], [18], [19],



[20], [21]. Unfortunately most lack any form of performance
guarantee. Recent work has demonstrated compelling potential
for linear bandits for index selection [6] complete with regret
bound guarantees, however the cold start problem is likely to
limit deployment as vendors and users alike may be concerned
about out-of-box performance. We demonstrate that a warm
start bandit can deliver strong short-term improvement for
database index selection without costing long-term results.

In summary, this paper makes the following contributions:
• We propose a framework for warm starting contextual

bandits based on Linear Thompson Sampling and extend
our technique to ε-greedy and LinUCB;

• Our Warm Start Linear Bandit algorithm can incorporate
prior knowledge from supervised learning (like [10]), but
also prior bandit learning, or manual construction of a
prior by a domain expert, for example. Notably our warm
start approach incorporates uncertainty quantification;

• We present a regret bound for Warm Start Linear TS that
demonstrates sublinear regret for long-term performance;
and

• Experiments on database index selection (using data
derived from standard system benchmarks), classification
task data and synthetic data demonstrates performance
improvement in the short term with performance com-
petitive with baselines (where such baselines are able to
be run).

II. BACKGROUND: CONTEXTUAL BANDITS AND LINEAR
THOMPSON SAMPLING

The stochastic contextual multi-armed bandit (MAB) prob-
lem is a game proceeding in rounds t ∈ [T ] = {1, 2, . . . , T}.
In round t the MAB learner,

1) observes k possible actions or arms i ∈ [k] each with
adversarially chosen context vector xt(i) ∈ Rd ;

2) selects or pulls an arm it ∈ [k];
3) observes random reward Rit(t) for the pulled arm it,

where each Ri(t) | xt(i) ∼ Pi|xt(i) independently over
i ∈ [k], t ∈ [T ].

The MAB learner’s goal is to maximise its cumulative ex-
pected reward—the total expected reward over all rounds—
which is equivalent to minimising the cumulative regret up to
round T :

Reg(T ) =

T∑
t=1

E [Rit(t) | xt(it)]− E
[
Ri?t (t) | xt(i?t )

]
,

where i?t ∈ arg maxi∈[k]E [Ri(t) | xt(i)], that is, an optimal
arm to pull at round t. When a MAB algorithm’s cumulative
regret Reg(T ) is sub-linear in T , the average regret Reg(T )/T
goes to zero. Such an algorithm is said to be a “no regret”
learner or Hannan consistent.

Thompson Sampling (TS), a Bayesian approach within the
family of randomised probability matching algorithms, is one
of the earliest design patterns for MAB learning [11]. Each
modeled arm’s reward likelihood is endowed with a prior.
Arms are then pulled based on their posteriors: e.g., parameters

Algorithm 1 Linear Thompson Sampler

1: Input: θ̂1, λ, δ, T
2: Initialize V1 ← λId, δ′ = δ

4T , b1 ← 0
3: for t = 1, . . . , T do
4: Sample ηt ∼ DTS
5: θ̃t ← θ̂t + βt(δ

′)V
−1/2
t ηt {perturbed parameter}

6: it ← s ∈ arg maxi∈[k] θ̃
T
t xt(i) {optimal arm}

7: Pull arm it and observe reward rt(it)
8: Vt+1 ← Vt + xt(it)x

T
t (it) {update Eq. (1)}

9: bt+1 ← bt + rt(it)xt(it)
10: θ̂t+1 ← V −1

t+1bt+1 {update Eq. (2)}
11: end for

for each arm can be drawn from the corresponding posteriors,
and then arm selection may proceed (greedily) by maximising
reward likelihood.

Linear Thompson Sampling (TS) [22], [23] is an algo-
rithm with sub-linear cumulative regret, when the context-
conditional reward satisfies a linear relationship

rt(it) = Rit(t) | xt(it) = θT? xt(it) + εt(it) ,

where additive noise εt(it) is conditionally R-subgaussian and
θ? ∈ Rd is an unknown vector-valued parameter shared among
all of the k arms.

Like most approaches to linear contextual bandit learning,
Linear TS adopts (online) ridge regression fitting for estimat-
ing the unknown parameter. For any regularisation parameter
λ ∈ R+, define the matrix Vt as

Vt = λI +

t−1∑
s=1

xs(is)x
T
s (is) . (1)

Then [23] demonstrated that we can estimate the unknown
parameter θ? as

θ̂t = V −1
t

t−1∑
s=1

xs(is)rt(is) . (2)

Earlier versions of Linear TS [22] do not include a tunable
regularisation parameter.

A result due to [24] is used within Linear TS: assuming
‖θ?‖ ≤ S, then with probability at least 1− δ ∈ (0, 1):

‖θ̂t − θ?‖Vt ≤ βt(δ) ,

βt(δ) = R

√
2 log

det(Vt)1/2 det(V1)−1/2

δ
+
√
λS .

In Thompson Sampling, we may introduce a perturbation
parameter ηt ∈ Rd, which, after rotation and scaling by the
inverse square root of the matrix V

−1/2
t , and scaling by

oversampling factor βt(δ′), promotes exploration around the
point estimate θ̂t:

θ̃t = θ̂t + βt(δ
′)V

−1/2
t ηt .

Moreover, [23] have shown, that if ηt follows distribution DTS
with the following properties:



1) There exists p > 0 such that, for all ‖u‖ = 1 we have
Pη∼DTS (uTη ≥ 1) ≥ p; and

2) There exist positive constants c and c′ such that, for all

δ ∈ (0, 1) we have Pη∼DTS
(
‖η‖ ≤

√
cd log c′d

δ

)
≥

1− δ ,
then Linear TS is Hannan consistent. We adopt a standard
multivariate Gaussian for ηt which satisfies the above proper-
ties [23]. With all of these definitions in mind, the version of
Linear TS used in this paper can be summarised as shown in
Algorithm 1.

III. WARM STARTING LINEAR BANDITS

We now detail our flexible algorithmic framework for warm
starting contextual bandits, starting with Linear Thompson
Sampling for which we derive a new regret bound.

A. Thompson Sampling
Given the foundation of Thompson Sampling in Bayesian

inference, it is natural to look to manipulating the prior as a
means to injecting a priori knowledge of the reward structure
before the bandit is put into operation. The Algorithm 1 imple-
mentation of Linear TS due to [23] decomposes the prior and
posterior distributions on θt as a Gaussian centred at the point
estimate θ̂t with covariance based on oversampling factor
βt(δ

′) and the matrix Vt via the random perturbation vector
ηt. Our approach to warm start is to focus on manipulating
the initial point estimate θ̂1 and the matrix V1 to incorporate
available prior knowledge into Linear TS.

Remark 1. Although Algorithm 1 appears to offer the freedom
to select any θ̂1, Equations (1) and (2) do not present an im-
mediate route to adapting subsequent point estimates θ̂t. Gen-
eralising Equation (2) to θ̂t = V −1

t (λθ̂1+
∑t−1
s=1 xs(is)rt(is))

is unintuitive and does not clearly admit regret analysis.

We adopt an intuitive approach of adapting Algorithm 1
to model the difference between an initial guess derived from
some process prior to bandit learning, and the actual parameter.
This prior process could be batch supervised learning, an
earlier bandit deployment on a related decision problem,
or simply a prior manually constructed by a domain
expert. Our general framework is completely agnostic and
generalises earlier approaches to warm-starting bandits such as
[10]. Without loss of generality we refer to this earlier process
as the first phase and the basis for which initial parameters are
designed as the first phase dataset. Let θ? = µ?+δ̄?, where µ?
is the true parameter of the first phase dataset and δ̄? represents
the concept drift between first phase and bandit deployment.
With this reparametrisation, our linear model becomes:

rt(it) = θT? xt(it) + εt(it)

= (µ? + δ̄?)
Txt(it) + εt(it)

rt(it)− µT? xt(it) = δ̄T? xt(it) + εt(it)

yt(it) = δ̄T? xt(it) + εt(it) .

Therefore, our problem has reduced from estimating θ? to
estimating δ̄?.

Consider a Bayesian linear regression model with the un-
known true value of first phase dataset µ? modeled by random
variable µ ∼ N (µ̂,Σµ) with conjugate context-conditional
Gaussian likelihood. We then model the difference parameter
δ̄? as δ̄ ∼ N (0, α−1I). If θ = µ+ δ̄ is the random variable
modelling θ?, then θ ∼ N (µ̂,Σµ + α−1I) owing to the
Gaussian’s stability property. Finally, since µ̂ is known, we
can model θ as θ = µ̂+ δ, that is, a random variable centred
at µ̂ which is shifted by drift δ ∼ N (0, (Σµ + α−1Id)).

The next result derives a generalisation of the coupled
recurrence Equations (1) and (2) for efficient incremental
computation of the generalised posterior estimates.

Proposition 1. Consider linear regression likelihood yi =
θTxi + εi, where εi ∼ N (0, R2), and prior θ ∼ N (0,V −1

1 ).
Then the posterior conditioned on data zi = (xi, yi) for i ∈ [t]
is given by N (θ̂t+1, R

2V −1
t+1) where θt point estimates are

defined by Equation (2), and we replace Equation (1) for Vt
with

Vt = R2V1 +

t−1∑
s=1

xs(is)x
T
s (is) , (3)

where R2 is the variance of the measurement noise.

Proof. The posterior distribution is:

p(θ | y1, · · · , yn)

∝ exp

{
−1

2

[
n∑
i=1

(
yi − θTxi

R

)2

+ θTV1θ

]}

∝ exp

{
−1

2

[
θT

(
1

R2

n∑
i=1

xix
T
i

)
θ

− 2

R2
θT

n∑
i=1

yixi + θTV1θ

]}

= exp

{
−1

2

[
θT

(
V1 +

1

R2

n∑
i=1

xix
T
i

)
θ

−θT
(

1

R2

n∑
i=1

yixi

)
−

(
1

R2

n∑
i=1

yixi

)T
θ

 .

To avoid clutter, let V̄n+1 = V1 + 1
R2

∑n
i=1 xix

T
i and

b̄n+1 = 1
R2

∑n
i=1 yixi. Therefore, our posterior distribution

can be rewritten as

p(θ | y1, · · · , yn)

∝ exp

{
−1

2

[
θT V̄n+1θ − θT b̄n+1 − b̄Tn+1θ

]}
∝ exp

{
−1

2

[
θT V̄n+1θ

− θT V̄n+1V̄
−1
n+1b̄n+1

− b̄Tn+1V̄
−T
n+1V̄n+1θ

+ b̄Tn+1V̄
−T
n+1V̄n+1V̄

−1
n+1b̄n+1

]}
= exp

{
−1

2

(
θ − V̄ −1

n+1b̄n+1

)T
V̄n+1

(
θ − V̄ −1

n+1b̄n+1

)}
,



which is proportional to N (V̄ −1
n+1b̄n+1, V̄

−1
n+1). Therefore, our

estimator for θ would be

θ̂n+1 = V̄ −1
n+1b̄n+1 = V −1

n+1bn+1 ,

where we have defined

Vn+1 = R2V1 +

n∑
i=1

xix
T
i , bn+1 =

n∑
i=1

yixi .

This completes the proof.

Our approach comes with an appealing interpretation in
setting δ̄ ∼ N (0, α−1I): when we are confident that our pre-
training guess is very close to the true parameter, we can set
drift α−1 to be very small and close to 0. However, when
we are not as confident, α−1 is naturally set large. Large
α−1 creates more “deviation” or error from our first phase
parameter µ?. This suggests a promising new direction which
we highlight in future work Section V.

Our simple reduction of warm start bandit learning to Linear
TS admits a regret bound. We follow the pattern of the regret
analysis of [23] with differences detailed next.

Observe first that ‖θ̂t−θ?‖Vt = ‖(θ̂t−µ̂)−(θ?−µ̂)‖Vt =
‖δ̂t − δ?‖Vt ≤ βt(δ′). Accordingly the argument yielding the
confidence ellipsoid βt(δ′) stated in [24, Theorem 2] bounding
‖θ̂t − θ?‖Vt applies in our case, whose full proof of its
modification can be found in the Appendix. However, as our
initial matrix V1 generalises λI , we must alter the penultimate
proof step of [23] as follows:
• the inequality proposed by [24] which is used to define
βt(δ) in their paper is not valid in our scenario. This is
corrected by using the version of βt(δ) presented in this
paper, removing the assumption that V1 = λ

R2 I and leave
it in terms of V1:

R

√
2 log

det(Vt)1/2 det(R2V1)−1/2

δ
+
√
λmax(R2V1)S

• the inequality of [23, Proposition 2] is no longer valid in
our case. However, the last inequality in [25] has modified
[23, Proposition 2] into:

t∑
s=1

‖xs‖2V −1
s
≤ 2 log

(
det(Vt+1)

det(R2V1)

)
and hence serves our purpose; and

• in proving [23, Theorem 1] the authors used the fact that
V −1
t ≤ 1

λI . This is not the case in our setting, but we
can generalise the result with similar reasoning yielding
V −1
t ≤ 1

λmin(R2V1)I , where λmin(R2V1) denotes the
minimum eigenvalue of the matrix R2V1.

We also need to change the definition of S, since our problem
has shifted from estimating θ to estimating δ. Therefore, after
modifying the framework, the Warm Start Linear Thompson
Sampling bandit can be summarised as in Algorithm 2, and
admits the following regret bound.

Theorem 2 (Warm Start Linear TS Regret Bound). Under the
assumptions that:

Algorithm 2 Warm Start Linear Thompson Sampler

1: Input: µ̂, α,Σµ, δ, T,R
2: Initialize δ̂1 ← 0, V1 ← R2(Σµ + α−1Id)

−1,
δ′ ← δ

4T , b1 ← 0
3: for t = 1, . . . , T do
4: Sample ηt ∼ DTS
5: θ̃t ← µ̂+ δ̂t + βt(δ

′)V
−1/2
t ηt {perturbed parameter}

6: it ← s ∈ arg maxi∈[k] θ̃
T
t xt(i) {optimal arm}

7: Pull arm it and observe reward rt(it) = Rit(t)|xt(it)
8: yt(it)← rt(it)− µ̂Txt(it)
9: Vt+1 ← Vt + xt(it)x

T
t (it) {update Eq. (3)}

10: bt+1 ← bt + yt(it)xt(it)
11: δ̂t+1 ← V −1

t+1bt+1 {update Eq. (2)}
12: end for

1) ‖x‖ ≤ 1 for all x ∈ X ;
2) ‖δ‖ ≤ S for some known S ∈ R+; and
3) the conditionally R-subgaussian process {εt}t is a mar-

tingale difference sequence given the filtration Fxt =
(F1, σ(x1, r1, · · · , rt−1,xt)) with F1 denoting any in-
formation on prior knowledge,

along with the definition of DTS given in Section II, then
with probability at least 1 − δ, with δ′ = δ/(4T ) and
γt = βt(δ

′)
√
cd log((c′d)/δ), the regret of Linear TS can be

decomposed as

Reg(T ) = RTS(T ) +RRLS(T ) ,

with each of the term bounded as

RTS(T ) ≤ 4γT (δ′)

p

(√
2T log

det(Vt+1)

det(R2V1)

+

√
8T

λmin(R2V1)
log

4

δ

)

RRLS(T ) ≤ (βT (δ′) + γT (δ′))

√
2T log

det(Vt+1)

det(R2V1)
.

B. Extension to ε-Greedy and LinUCB Learners

The core idea of our warm-starting method as derived for
Linear Thompson Sampling, lies in the method of setting up
the initial phases. The same expression of initial set up can be
applied to other contextual bandit algorithms such as ε-Greedy
and LinUCB.

In the ε-Greedy Algorithm, we balance exploration and
exploitation by means of relatively naı̈ve randomness: in
each round we (uniformly) explore with probability ε and
exploit with probability 1 − ε. Specifically, by incorporating
warm start, this means that at each round we choose an
arm at random uniformly from the set [k] with probability
ε, and choose an arm at random uniformly from the set
S = {s : s ∈ arg maxi∈[k] θ̂

T
t xt(i)} with probability 1−ε. We

summarise the Warm Start ε-Greedy Algorithm in Algorithm 3
We can also extend our warm-starting technique to LinUCB

using the fact that θ ∼ N (µ̂ + V −1
t bt, R

2V −1
t ), which



Algorithm 3 Warm Start ε-Greedy

1: Input: µ̂, α,Σµ, ε, T,R
2: Initialize δ̂1 ← 0, V1 ← R2(Σµ + α−1Id)

−1, b1 ← 0
3: for t = 1, . . . , T do
4: Sample ut ∼ U(0, 1)
5: if ut < ε then
6: choose it ∈ [k] uniformly at random
7: else
8: θ̂t ← µ̂+ δ̂t
9: it ← s ∈ arg maxi∈[k] θ̂

T
t xt(i) {optimal arm}

10: end if
11: Pull arm it and observe reward rt(it) = Rit(t)|xt(it)
12: yt(it)← rt(it)− µ̂Txt(it)
13: Vt+1 ← Vt + xt(it)x

T
t (it) {update Eq. (3)}

14: bt+1 ← bt + yt(it)xt(it)
15: δ̂t+1 ← V −1

t+1bt+1 {update Eq. (2)}
16: end for

Algorithm 4 Warm Start LinUCB

1: Input: µ̂, α,Σµ, ρ, T,R
2: Initialize δ̂1 ← 0, V1 ← R2(Σµ + α−1Id)

−1, b1 ← 0
3: for t = 1, . . . , T do
4: θ̂t ← µ̂+ δ̂t

5: it ← s ∈ arg maxi∈[k] θ̂
T
t xt(i) + ρR

√
xTt V

−1
t xt

6: Pull arm it and observe reward rt(it) = Rit(t)|xt(it)
7: yt(it)← rt(it)− µ̂Txt(it)
8: Vt+1 ← Vt + xt(it)x

T
t (it) {update Eq. (3)}

9: bt+1 ← bt + yt(it)xt(it)
10: δ̂t+1 ← V −1

t+1bt+1 {update Eq. (2)}
11: end for

is a powerful result. It was proposed in [3] that one way
to interpret their algorithm is to look at the distribution of
the expected payoff θT? xt. With the affine transformation
property of multivariate Gaussian distributions, we have that
θTx ∼ N (θ̂Tt x, R

2xTV −1
t x). Therefore, the upper bound of

such a quantity is:

µ̂Tx+ (V −1
t bt)

Tx+ ρR

√
xTV −1

t x

for some value ρ, which is left as a hyperparameter. The
summary of our Warm Start LinUCB Algorithm can be seen
in Algorithm 4.

IV. EXPERIMENTS

We now report on a comprehensive suite of experimental
evaluations of our warm start framework against a number of
baselines and different datasets. We are interested in the benefit
of warm start over cold start—in such cases we focus on short-
term performance differences, as this is a practical limitation of
bandits in high-stakes applications. We also explore the impact
of prior misspecification as a potential risk of incorrect warm
start. We summarise our experiments next, and then describe
them with results in more detail below.

Datasets. Experiments in database index selection explore
the effect of warm start in selecting a single index per round
where queries arrive to the database in batches and rewards
correspond to (negative) execution time. We use a commercial
database system, and the standard TPC-H benchmark [26].
Results on two OpenML datasets (Letters and Numbers) test
bandits on online multi-class classification, as a benchmark
previously used to evaluate the ARRoW warm-start tech-
nique [10]. These datasets are advantageous to ARRoW in that
they supply the (restrictive) kind of prior knowledge needed—
supervised pre-training. Experiments on synthetic data provide
sufficient control of the environment to explore limitations of
our warm start approach.

Baselines. On the database index selection task, we use
cold start TS as a natural and fair baseline. On the OpenML
datasets we include the ARRoW warm-start framework, which
was originally tested in the same way. We also demonstrate
the performance of both frameworks on the ε-greedy and
LinUCB learners, as well as Linear TS. Where cold start
corresponds throughout to having no pre-training dataset (i.e.,
Algorithm 1), hot start in the synthetic experiment corresponds
to having 100% accuracy on the pre-training parameter µ?,
and warm start corresponds to having an estimate on the
pre-training parameter µ?, namely µ̂. By its very nature, we
can only produce hot start results with the artificial dataset,
since 100% accuracy on the pre-training parameter requires
an infinite amount of observation in the real world database
index selection problem.

Hardware. All experiments are performed on a commodity
laptop equipped with Intel Core i7-6600u (2 cores, 2.60GHz,
2.81GHz), 16 GB RAM, and 256 GB disk (Sandisk X400
SSD) running Windows 10. In database experiments, we report
cold runs only: we clear database buffer caches prior to
query execution—the memory setting thus does not impact
our findings.
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Fig. 1: Cold Start vs. Warm Start Linear TS for database index
selection on the the TPC-H benchmark.



(a-i) (a-ii) (a-iii)

(b-i) (b-ii) (b-iii)
Fig. 2: Comparisons of both our and ARRoW warm-start frameworks on the (row a) Letters and (b) Numbers datasets, with learners (column
i) ε-greedy, (ii) LinUCB and (iii) TS.

A. Database Index Selection
For the real-world experiment, we provide an application

to a version of the database index selection problem, with
problem setting as follows. At round t = 1, 2, . . . , T , we
observe a workload Wt with a set of queries, and the system
recommends one index it out of the set of all possible indices
I. After index it is created, we execute the queries in workload
Wt. Our chosen aim is to minimise the query execution time,
noting we do not take into account the time it takes to create
the index it. After qt is executed, the index it is dropped and
the buffer is cleaned.

In this paper, the adopted database comes from the TPC-H
benchmark [26]. In each round, five TPC-H query templates
are randomised to represent the workload at round t.

It should be noted that the value of R and S are unknown
in the real-world dataset. In this case, we treat these as
hyperparameters which need to be chosen, adding to α.

In running this experiment, we have used the context
features as described by [6], with the reward being the
performance gain, described as tno index− ti, where tno index
corresponds to the execution time of the whole workload
without any indices and ti the execution time of the whole
queries in the workload using index i.

Due to the lack of information on the most optimal index, it
is impossible to retrieve the regret for each round. Therefore,
with this real-world experiment, we present the average execu-
tion time (loss) of workload Wt based on what both algorithms
recommend, which can be found in Figure 1.

Results. It can be seen that the warm-started Linear TS
outperforms the cold-started Linear TS, in short-term rounds
and cumulatively. This can be explained by the query tem-
plates used to pre-train the warm-started bandit resemble the
templates used in the testing dataset, leading the warm-started
bandit to guess the initial weight θ1 = µ̂ to be closer to the
actual weight θ? compared to the initial guess of θ1 = 0 by
the cold-started bandit.

B. OpenML Classification Dataset

We chose two of the datasets used in [10], which correspond
to letters and numbers identification respectively. We split the
data such that 10% is used as the supervised learning examples
and the other 90% used as the actual bandit rounds. This
advantages ARRoW [10] as the only form of permissible prior
knowledge. We try all learners presented in this paper for this
dataset: ε-greedy, LinUCB and Linear Thompson Sampling.
As for the hyperparameters, we used ε = 0.0125 for ε-greedy,
ρR = 0.2 for LinUCB, βt(δ) = 1 for TS in Letter dataset
and βt(δ) = 0.05 for TS in Numbers dataset. All of these
hyperparameters were found iteratively by grid search.

As described in [10], we transform the dataset into a dataset
capable of evaluating bandit algorithm by mapping the classes
as the arms and the cost of each class as c(a) = 1(a 6= y)
given example (x, y). For the classification problem, we also
modify our bandit algorithm which usually shares its parame-
ter across the arms. However, since the context of each arm is
the same for the classification task, we distinguish the value by



(a-i) (a-ii) (a-iii)

(b-i) (b-ii) (b-iii)

(c-i) (c-ii) (c-iii)

(d-i) (d-ii) (d-iii)
Fig. 3: Sensitivity analysis showing total cumulative cost achieved vs. hyperparameter. Rows (a,b) are on the Letters dataset while rows (c,d)
are on Numbers. Rows (a,c) demonstrate ARRoW results with varying λ while (b,d) show our warm start approach Diff with varying α.
Finally the learners vary over (column i) ε-greedy, (ii) LinUCB, (iii) LinTS.

making the parameter different, leading to the disjoint bandit
with arm i having the weight θi,t. As such its reward is

modelled by the equation rt(i) = θTi,?xt(i) + εt(i)

We have used the term cost instead of rewards in this



(a) (b)

Fig. 4: Artificial dataset experimental results for (a) an accurate prior and (b) a misspecified prior, comparing cold-, warm- and hot-start TS.

dataset, which requires minor modification of the learners: we
change the argmax operation into argmin and in the case of
LinUCB, the Upper Confidence Bound in Line 5 to Lower

Confidence Bound θ̂Ti,txt(i)− ρR
√
xTt (i)V −1

t xt(i).
The ARRoW algorithm presented in [10] is also executed

partially, with the size of the class |Λ| set to 1. We chose
the best performing λ to be compared against our algorithm,
for fairness. We note that sensitivity analysis in Figure 3,
demonstrate that the choices are generally not very important.

We follow a suggestion of the original ARRoW paper to
evaluate [10, Algorithm Line 5], evaluating

arg min
f∈F

(1− λ)
∑

(x,c)∈S

K∑
a=1

(f(x, a)− c(a))2

+ λ

t∑
τ=1

1

pτ,aτ
(f(xτ , aτ )− cτ (aτ ))2

}
where f(x, a) is a linear function and F is the class of all
linear functions. The solution of which can be obtained via
the weighted linear regression.

We present the results for the OpenML Dataset in Figure 2,
where we have labelled our algorithm diff for the fact that our
algorithm models the difference between the true parameter
from the guessed weight. It can be seen that our algorithm
performs as well as the previous algorithm, whilst still offering
the flexibility to choose the initial guess.

Sensitivity analysis is presented in Figure 3. As mentioned,
neither warm start approach is very sensitive to their hyper-
parameters. These results also support our choice of α = 107

across these experiments.

C. Synthetic Experiments

In generating the artificial dataset, we started off by choos-
ing a value for θ?. In this case, we chose the value to be
θT? =

[
0.1 0.3 0.5 0.7 0.9

]
, with the bandit having 10

arms. After the value of θ? is chosen, we generate a random
vector xt(i) ∈ Rd, d = 5 where each element is drawn
from uniform distribution U(0, 1) for each i = 1, 2, · · · , 10,
followed by taking the inner product and adding the Gaussian
noise εi(t) ∼ N (0, R2), R = 0.25, independent on the arm i
and round number t. The noisy reward ri(t) = θT? xt(i)+εi(t)
is saved, as well as the regret of pulling arm i, namely
θT? xt(i) −maxi∈[k] θ

T
? xt(i). This makes it possible to com-

pare all bandit algorithms equally without needing off-policy
evaluation. We repeat this process 100,000 times, which
corresponds to 100,000 rounds of the second phase dataset.

To generate the pre-training dataset, we firstly choose the
value of α−1, before sampling the true parameter deviation
δ? ∼ N (0, α−1I). After the value δ? is sampled, we calculate
µ? = θ?−δ? and conducted the process exactly as we gener-
ated the second phase dataset. We generated two types of pre-
training dataset: accurate prior, where we chose α−1 = 10−4

and misspecified prior, where we chose α−1 = 0.25. We
produced 10,000 rounds worth of pre-training dataset.

We observed that, with the dataset generated both from the
accurate and misspecified prior regime, α = 10 seems to be the
cut-off point where all algorithms work quite well. Therefore,
we plot for all warm-starting methods the cumulative regret
for α = 10, as shown in Figure 4.

Results. In the accurate prior regime, it is clear that the hot-
started and warm-started bandits overperform the cold-started
bandit. This can be explained by the fact that the value of θ?
is closer to µ̂ or µ? as opposed to 0. However, the opposite
problem occurs when the prior is misspecified, as the cold-start
bandit slightly outperforms the hot-started bandit and warm-
started bandit, due to the fact that θ? is closer to 0 compared
to µ̂ or µ?.

It should be noted as well, that we have held the hy-
perparameter α the same for all regimes here. When the
hyperparameter α is tuned optimally, the hot-started and cold-
started bandits are able to perform even better, as the pre-



training dataset is treated as if they are the real dataset.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have developed a flexible framework for
warm starting linear contextual bandits that inherits the flexi-
bility of Bayesian inference in incorporating prior knowledge.
Our approach generalises the Linear Thompson Sampler [23],
by permitting arbitrary Gaussian priors for potentially im-
proving short-term performance, while maintaining the regret
bound that guarantees the long-term performance of Hannan
consistency. While little attention has been paid to the warm
start problem since the direction was suggested by [3], the few
existing works on warm start are far less flexible in catering to
potential sources of prior knowledge, and in how uncertainty
is quantified. We motivate the opportunity for warm start in the
database systems domain where bandit-based index selection
could be pre-trained prior to deployment by users, and we
demonstrate the practical potential for warm start on a standard
database benchmark.

Being relatively unexplored, we believe that warm start
bandits offer a number of intriguing future directions for
research, well suited to the Thompson Sampling framework
on which our approach was developed.

Adaptive drift hyperparameter. Our result suggest tuning
α−1, which reflects drift during warm start. We expect large
α−1 when tasks are dissimilar, and small values for similar
tasks. It is intuitively appealing to attempt to use newly ob-
served data for adapting α−1. Approaches that might bear fruit
include: Hierarchical Bayes via multi-level modelling [27], or
using Empirical Bayes via evidence maximisation [28].

Under an adaptive hyperparameter, α−1 is no longer in-
dependent of the other variables. This violates one of the
assumptions made in [24], as the choice of λ in their scenario
is independent of other variables. Therefore, the validity of
the oversampling factor becomes questionable. As the regret
analysis for Linear TS depends on the validity of the upper
bound provided by [24], this in turns becomes invalid as well.
As such regret analysis for the adaptive case would become
another open problem.

Adaptive oversampling factor. In this paper, it is assumed
that the `2-norm of the parameter is bounded by S. However,
this may not be known with confidence in some applications.
In such cases the algorithms are still valid, but the bounds are
not. However, as more data is observed, we gain information
(accuracy) about δ?: the variance of random variable δ drops.
Therefore, one may wish to bound ‖δ‖ with some level of
probability. It is interesting to note that how large the value of
S is closely related on the drift hyperparameter—potentially
both quantities could be optimised using one algorithm jointly.

Reward unit mismatch. When the pre-training data is
provided, there is a potential difference between the units of
the pre-training and deployed datasets. An interesting problem
arises by noticing that the performance of the contextual bandit
algorithm is not measured by how close the predicted reward is
to the actual reward, but rather the rank of the arm values. As
such it is the direction of the initial guess of θ that is important,

not its norm. A simple solution could be learning a constant
scaling the size of the pre-training reward to the deployed
rewards. Ideally this scalar would be incorporated into the
Warm Start Lin TS, provided performance is not sacrificed.

APPENDIX

A. Full Proof of the Regret Bound

We now detail the full proof of Theorem 2, by extending
a previous analysis [24]. We restate our estimate of the
parameter for convenience:

θ̂n = V −1
n bn ,

where for n ≥ 2 we have defined

Vn = V̄1 +

n−1∑
i=1

xix
T
i , bn =

n−1∑
i=1

yixi .

Let X1:t and Y1:t be matrices comprising the contexts and
the rewards up to round t respectively and ε1:t be the vector
containing their corresponding subgaussian noise, that is:

X1:t =

x
T
1
...
xTt

 , Y1:t =

y1

...
yt

 , ε1:t =

ε1...
εt

 .

Therefore, we can write θ̂t as

θ̂t = (XT
1:t−1X1:t−1 + V̄1)−1(XT

1:t−1Y1:t−1) .

To avoid clutter, let X = X1:t−1,Y = Y1:t−1, ε = ε1:t−1.
Then, we have Vt = V̄1 +XTX . Therefore, we can expand
the expression of θt above as:

θ̂t = (XTX + V̄1)−1(XTY )

= (XTX + V̄1)−1[XT (Xθ? + ε)]

= (XTX + V̄1)−1XT ε+ (XTX + V̄1)−1XTXθ?

= (XTX + V̄1)−1XT ε+

(XTX + V̄1)−1(XTX + V̄1 − V̄1)θ?

= (XTX + V̄1)−1XT ε+

(XTX + V̄1)−1(XTX + V̄1)θ?−
(XTX + V̄1)−1V̄1θ?

= (XTX + V̄1)−1XT ε+ θ? − (XTX + V̄1)−1V̄1θ? .

Next, we would like to obtain for any vector with appropriate
size c:

cT θ̂t − cTθ?
= cT (XTX + V̄1)−1XT ε− cT (XTX + V̄1)−1V̄1θ?

= 〈c,XT ε〉V −1
t
− 〈c, V̄1θ?〉V −1

t
.

Now as we have assumed that V̄1 is positive definite, and
since Vt is the sum of positive definite matrices, then Vt is
also a positive definite matrix, thus the inner products are



well-defined. Therefore, we can invoke the Cauchy-Schwarz
Inequality to obtain

|cT θ̂t − cTθ?| ≤ ‖c‖V −1
t
‖XT ε‖V −1

t
+ ‖c‖V −1

t
‖V̄1θ?‖V −1

t

= ‖c‖V −1
t

(
‖XT ε‖V −1

t
+ ‖V̄1θ?‖V −1

t

)
.

Now [24, Theorem 1], where V = V̄1, yields, with probability
at least 1− δ that

‖XT ε‖V −1
t
≤ R

√√√√2 log

(
det(Vt)

1
2 det(V̄1)

1
2

δ

)
.

Furthermore, since c can be any vector, we choose c =
Vt(θ̂t − θ?), which yields

cT θ̂t − cTθ? = cT (θ̂t − θ?)
= (θ̂t − θ?)TVt(θ̂t − θ?)
= ‖θ̂t − θ?‖2Vt ,

and

‖c‖V −1
t

= ‖Vt(θ̂t − θ?)‖V −1
t

=

√
(θ̂t − θ?)TV T

t V
−1
t Vt(θ̂t − θ?)

= ‖θ̂t − θ?‖Vt .

Combining both expressions above, we have:

‖θ̂t − θ?‖Vt ≤ ‖V̄1θ?‖V −1
t

+

R

√√√√2 log

(
det(Vt)

1
2 det(V̄1)

1
2

δ

)
.

Now we use the fact that Vs ≤ Vt for s ≤ t, thus we can
bound:

‖V̄1θ?‖V −1
t

=

√
θ?V̄ T

1 V
−1
t V̄1θ?

≤
√
θ?V̄ T

1 V̄
−1

1 V̄1θ?

= ‖θ?‖V̄1

≤
√
λmax(V̄1)‖θ?‖

≤
√
λmax(V̄1)S .

Thus, we conclude that

‖θ̂t − θ?‖Vt ≤ R

√√√√2 log

(
det(Vt)

1
2 det(V̄1)

1
2

δ

)
+√

λmax(V̄1)S .
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