
A Multi-level Caching Architecture for Stateful Stream
Computation

Muhammed Tawfiqul Islam
tawfiqul.islam@unimelb.edu.au
The University of Melbourne
Melbourne, Victoria, Australia

Renata Borovica-Gajic
renata.borovica@unimelb.edu.au
The University of Melbourne
Melbourne, Victoria, Australia

Shanika Karunasekera
karus@unimelb.edu.au

The University of Melbourne
Melbourne, Victoria, Australia

Abstract
Stream processing is used for real-time applications that deal with
large volumes, velocities, and varieties of data. Stream processing
frameworks discretize continuous data streams to apply computa-
tions on smaller batches. For real-time stream-based data analytics
algorithms, the intermediate states of computations might need to
be retained in memory until the query is complete. Thus, a massive
surge in memory demand needs to be satisfied to run these algo-
rithms successfully. However, a worker/server node in a computing
cluster may have limited memory capacity. In addition, multiple
parallel processes might be running concurrently, sharing the pri-
mary memory. As a result, a streaming application might fail to
run or complete due to a memory shortage. Although spilling state
information to the disk can alleviate the problem by allowing the
query to finish, it will cause significant performance overhead. An
in-memory-based object store as the state backendwill also perform
poorly due to the added communications with the external object
store and serializing/deserializing the objects. This paper proposes
a multi-level caching architecture to mitigate the surge of memory
demand from the processes running complex stateful streaming
applications. The multiple levels of the cache span across the pro-
cess heap space, in-memory distributed object store, and secondary
storage. The objects/states required in the computation are always
served from the fastest level of the cache to boost the application
performance. We also provide a multi-level caching library in Java
which can be used to implement scalable streaming algorithms. The
underlying cache management completely abstracts the multi-level
cache implementation from the application and handles seamless
migration of states/objects across different levels of the cache. In ad-
dition, the multi-layer caching architecture is configurable (i.e., an
application can choose to leave out a cache level.) The experimental
results demonstrate that our proposed multi-level caching approach
for state management can manage large computational windows
and improve the performance of an actual streaming application
up to three times compared to the in-memory object store-based
state backend.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DEBS ’22, June 27–30, 2022, Copenhagen, Denmark
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9308-9/22/06. . . $15.00
https://doi.org/10.1145/3524860.3539803

CCS Concepts
• Computer systems organization → Real-time system archi-
tecture; • Information systems→ Data management systems.
Keywords
Stream Computing, Performance Improvement, Cache manage-
ment, JVM, Caffeine, Redis

ACM Reference Format:
Muhammed Tawfiqul Islam, Renata Borovica-Gajic, and Shanika Karunasek-
era. 2022. A Multi-level Caching Architecture for Stateful Stream Compu-
tation. In The 16th ACM International Conference on Distributed and Event-
based Systems (DEBS ’22), June 27–30, 2022, Copenhagen, Denmark. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3524860.3539803

1 Introduction
Real-time data analytics algorithms are used in many application
areas such as fraud detection, stock trades, business analytics, cus-
tomer/user activity tracking, and IT systems monitoring. Although
traditional batch-oriented systems can process large chunks of
static data, they can not be used to handle such modern applica-
tions where data is generated continuously. Thus, stream comput-
ing frameworks such as Storm[1], Spark[2], Flink[3], and Heron[4]
are used with these applications to process real-time streaming
data. In stream computing, continuous data streams are generally
discretized to apply computations on subsets of data. The interme-
diate data and results of computations are called the state of an
application that can be used in subsequent operations. Researchers
have proposed novel ways[5, 6], such as windowing and key-value
pairs, to represent, manage, and use the computational state of an
application in data stream processing.
Stream processing frameworks can be deployed in a set of Cloud
Virtual Machines (VMs) or physical servers. Multiple processes
are generally created to run in parallel in a particular host. For
example, a window-based ML or data analytics algorithm might
accumulate a large amount of data in a specific time frame to be
processed as a sequence. In addition, if the outputs from one oper-
ation are needed in the subsequent operations, then the states of
computations might need to be retained in memory to reduce the
performance overhead of the application. The memory allocated to
a process can be dynamically increased in size depending on the
primary memory availability of the host. However, as the demand
for memory increases, the total available memory might run out,
especially if multiple processes are co-located in the same host.
Although it is possible to allocate extensive memory to a process
if the OS supports virtual memory, it might lead to severe perfor-
mance degradation due to increased page swapping by the OS. Thus,
it is often infeasible to satisfy the increasing memory demand of
complex stream processing tasks in a scalable manner. There are

67

https://orcid.org/1234-5678-9012
https://orcid.org/1234-5678-9012
https://orcid.org/1234-5678-9012
https://doi.org/10.1145/3524860.3539803
https://doi.org/10.1145/3524860.3539803

DEBS ’22, June 27–30, 2022, Copenhagen, Denmark Islam, et al.

Figure 1: An example of complex interdependent states of
objects in a data analytics algorithm.

some works from academia and industry to achieve transparent
state management. However, there is limited support for the diverse
representation of a process’s state[7]. In most existing state man-
agement frameworks, the abstraction of process states is limited
to key-value pairs. Computational states of a process may, how-
ever, exist in other forms such as graphs, trees, and hashes that can
hardly be represented with key-value mappings[8]. Thus, there is a
need to support arbitrary data structures for state representation
while keeping the entire state management process transparent to
the applications[5, 9]. For example, data structures offered by the
programming languages such as Arrays, HashMaps, Lists need to
be cacheable without the need to manage the key-value mappings
associated with both the program caches and the in-memory ob-
ject stores. In addition, there is a need to support nested cacheable
data structures such as graphs and trees, which will enable fast
and transparent implementation of complex streaming applications.
Lastly, reducing the excessive overhead of state migration between
the process heap and the state backend is also a key problem that
needs to be addressed.
As a motivating example, consider a streaming application that
collects real-time social media data streams to build a network
graph of users to detect the evolution of communities over time. As
shown in Fig. 1, if the application collects real-time streams over
a vast geographical location, the size of the graph will increase
rapidly, and it would be infeasible to retain the complete graph in
the main memory for analysis. Although some parts of the graph
can be kept in the process heap while the rest can be migrated to a
state backend such as an in-memory object store or disk, this could
result in a severe degradation in performance and may not meet the
needs of the stream processing paradigm due to increased latency.
Thus, based on the usage of the accumulated data/objects, there is
a need for the application to access frequently used data/objects
quickly, possibly from a closer/faster memory location (e.g., process
heap).
To address the problems mentioned above, we propose a multi-level
caching architecture to improve the performance of the stateful and
memory-hungry streaming applications. This is the first approach
to integrating a multi-level cache with stream-based applications
to the best of our knowledge. The multiple levels of the cache span

across the process heap space, in-memory distributed data struc-
ture store, and secondary storage. The states/objects required in
the computation are always served from the fastest level of the
cache to boost the application performance. If the fastest level of
the cache runs out of memory, the objects from the fastest level
of cache are seamlessly migrated to the slower levels of the cache
by following a caching policy. We also provide an Application Pro-
gramming Interface (API) written in Java, which provides a high
level of abstraction to the programmers while developing complex
stateful stream processing applications. The API implements vari-
ous types of cacheable data structures to obtain any complex state
representation. The underlying multi-level caching framework ef-
ficiently handles the memory requirement of any application and
provides a transparent interface to the applications for using the
multi-level cache. In addition, the multi-layer caching framework
is configurable (i.e., an application can choose to leave out a cache
level.)
In summary, the contributions of this work are as follows:

• We propose a scalable multi-level caching architecture to sup-
port the state management of complex streaming applications.

• We implement a prototype system by following the multi-level
caching architecture. We also provide a prototype API in Java
for the proposed multi-level caching architecture as a caching
library for developing stateful stream applications that benefit
from in-memory caching.

• We incorporate various data structures into the caching API
to represent complex states within any stream application. In
addition, the caching API manages the application state and
cache levels transparently.

• We implement real-time streaming and synthetic applications
by utilizing the prototype API to showcase the performance
benefits.

The rest of the paper is organized as follows. Section 2 discusses
the related literature and highlights the gaps in the current works.
Section 3 presents the proposed system architecture. Section 4 pro-
vides the details of the implemented prototype system. Section 5
depicts the proposed multi-level caching library. Section 6 discusses
experimental settings, benchmark applications, and various state
management approaches used in the evaluation. Section 7 demon-
strates the performance evaluation of various state management
approaches while running the synthetic application as the bench-
mark. Section 8 shows the comparison of various state management
approaches while running the real benchmark application. Finally,
section 9 concludes the paper and highlights future work.
2 Related Work
Iterative Machine Learning (ML) algorithms such as PageRank,
K-Means, and its variants[10] work in a step-by-step manner to
converge towards a final solution. To deal with big state sizes, some
algorithms either try to approximate smaller states[11] or use fewer
iterative steps[12–14]. However, these approximate algorithms sac-
rifice accuracy for performance. Furthermore, for emerging applica-
tion scenarios, such as the Internet of Things (IoT), social media data
analytics, real-time business analytics, and fraud detection, contin-
uous data streams must be processed with minimum delays[8]. In
addition, real-time updates and maintenance of big states for these

68

A Multi-level Caching Architecture for Stateful Stream Computation DEBS ’22, June 27–30, 2022, Copenhagen, Denmark

applications become more challenging due to limited primary mem-
ory availability. Lastly, the state management framework needs to
be transparent and support a variety of data structures to represent
complex states[7] so that it is easier to create and deploy real-time
stream-based analytics algorithms.
2.1 State Management in Big Data Frameworks
Big data and stream computing frameworks lack support for trans-
parent and real-time state management[7]. For example, Apache
Storm only supports stateless processing. Storm implements state
management at the application level to ensure fault tolerance and
scalability of the stateful applications. However, there is no native
mechanism to manage the state within the framework. To over-
come this limitation, an extension of Storm called Trident[15] has
been proposed to provide an abstract layer for state management.
Heron[4] uses stateful topologies consisting of spouts and bolts. In
the Heron topologies, spouts and bolts automatically store their
states when processing tuples. Heron also uses tuple acknowledg-
ments for fault tolerance. Samza[16] manages large states (e.g.,
multiple GBs in each partition) by snapshotting states in local stor-
age while using Kafka[17] to carry out state changes. Spark[2]
implements state management by updating operations via trans-
formations in the DStreams (i.e., a discretized stream). Fault tol-
erance in Spark is achieved with immutable collections or RDDs
(resilient distributed datasets)[18]. During stream processing, Spark
uses micro-batches, where an old state is used to generate another
micro-batch result and a new state. Flink[19] can keep the states in
memory (e.g., internal states as objects on the JAVA heap), can back
up states in a file system (e.g., HDFS), and can also persist states in
RocksDB[20, 21]. However, state management in these frameworks
is mainly done with periodic checkpointing, which is insufficient
for dealing with dynamic state updates in a real-time application.
In addition, these frameworks provide key-value-based state man-
agement, suitable primarily for global snapshot and checkpointing
for fault tolerance purposes. Furthermore, the state backend utilizes
persistent storage, which is not fast enough to cope with dynamic
state updates and migrations from real-time applications. Although
some frameworks support in-memory object stores such as Redis
as the state backend, the performance of real-time applications will
degrade significantly due to continuous communication with the
external store (e.g., Redis), object serialization/deserialization, and
state migrations. Lastly, there is no support for creating different
cacheable data structures to represent the state.
2.2 State Management with In-memory Object

Store Databases
The performance and size of both RAM and faster persistent storage,
such as solid-state drives (SSDs), have become more common these
days. Thus, in-memory object store databases have become popular
to provide millisecond latency to the applications. When data or
objects are kept in such databases, primary memory is used by
default to store the objects for getting a fast query response. Thus,
the application will perform significantly faster if data/objects are
fetched frommemory. However, as data/objects become too large to
fit into the memory, they will be automatically persisted on the disk
by the in-memory object-store. Redis[22] is one such in-memory
data structure store that can be used as a database, cache, and mes-
sage broker. To achieve a better performance, Redis works with

an in-memory dataset. Redis offers replication and, depending on
the application scenario, can persist data periodically to disk or by
appending each command to a disk-based log. If only an in-memory
cache is required, persistence can be disabled. In Redis, data/objects
can be stored as key-value pairs. There is also limited support to
map data structures such as Lists, Sets, Hashes. RocksDB[20, 21]
also offers a key-value interface where keys and values are arbi-
trary byte streams. RocksDB uses persistent storage for the state
backend and log-structured merge trees to obtain significant space
efficiency and better write throughput while achieving acceptable
read performance. HazelCast[23] offers millisecond latency with
its in-memory dataset and utilizes persistent storage for replication.
However, all these aforementioned in-memory object stores only
provide key-value-based interfaces, so it is not possible to store
complex states/objects for a streaming application[7]. In addition,
compared to the sub-nanosecond performance of the process heap,
the sub-millisecond latency incurred by the communication with
the in-memory object store would significantly reduce the per-
formance of a streaming application if the backend is utilized for
creating, storing, and updating states in real-time. Redisson Live
Objects (RLO)[24] uses Redis as its data storage, where all changes
to the object are translated to Redis commands and operated on
a given Redis hash. The local JVM does not hold any value in the
object’s fields except for the field representing the hash’s key. If
a field of an object is updated, only those changes are pushed to
Redis. If an object is created as an RLO, the object exists entirely
in the Redis and can save critical JVM memory. However, there is
a considerable performance overhead as updating a single field of
a complex object triggers a Redis communication to synchronize
the updated object in Redis. Thus, in-memory object stores are
suitable for fault tolerance, but they are not well-suited to deal with
the challenge of updating dynamic states of real-time streaming
applications.
2.3 State Management with Program Caches
There are some preliminary works to achieve transparent state man-
agement [5, 9, 25, 26] for stream computing. ChronoStream[27] is
one such framework that treats the internal state of an operator as a
first-class citizen and provides state elasticity to cope with workload
fluctuation and dynamic resource allocation. ChronoStream enables
transparent dynamic scaling and failure recovery by eliminating
any network I/O and state synchronization overhead. However,
there is still limited support for the diverse representation of the
state. In addition, most of the abstraction and presentation of oper-
ator states in stream computing is limited to key-value mapping
for ease of implementation. However, for complex stream-based
ML or data analytics applications, computational states may need
to be stored in other forms such as graphs, hashes, and trees that
cannot be stored using a key-value mapping. Program caches such
as Caffeine[28–30], JCache[31], Guava Cache[32], and Ehcache[33]
offer great performance to an application as these caches reside
within the heap space of a process. However, these caches also work
with key-value-based data structures and do not offer automatic
state migration for diverse data structures when the cache size limit
is reached.
In this paper, we propose a flexible caching architecture and a pro-
totype caching library to improve stateful stream computing. As

69

DEBS ’22, June 27–30, 2022, Copenhagen, Denmark Islam, et al.

Figure 2: The proposedmulti-level caching architecture. Each
process has its own singleton program cache, which is shared
by multiple threads within that process. Different processes
on the same host share the same in-memory object store and
secondary storage. The cachemanager provides a transparent
interface to the application code to enable caching support.

neither a program cache nor an in-memory object store is sufficient
to handle this challenging problem, we bridge the gap by combining
them to form a multi-level caching architecture to improve per-
formance and scalability. In addition, we also support diverse data
structures to represent complex states easily within the application.
Lastly, the state management is kept transparent for easy deploy-
ment of stateful streaming applications. Thus, the application can
use complex cacheable objects without the need to consider any
key-value mappings, caching policies, and multi-layer memory.
3 System Architecture
This section proposes a multi-level caching architecture to support
scalable memory management of stateful streaming applications.
The default heap space of the process is considered the first level
of a cache which is also the fastest level. For the other levels, in-
memory object store and secondary storage are considered. In a host
machine where multiple stream processes are running, each process
will only have a limited amount of heap space. Multiple threads
will share this heap space within that process. The heap space is
used to store objects created dynamically within the process, and
it is generally managed automatically. However, the heap space
might run out if the state of streaming query is too large to fit in. If
some part of the heap space can be managed, it would be easier to
understand when the heap memory limit is approaching and, if so,
how to deal with the increase in memory demand.
3.1 Objectives
To support scalable stateful computing for a streaming application,
we first define the objectives of the system, which are as follows:
(1) Provide a transparent state management system for a stream-

ing application. Thus, the state management system needs to
decouple and hide the underlying memory management details
from the application code.

(2) Support for multiple cacheable data structures (e.g., Lists, Maps),
which can be used by the application to represent the complex
state of a streaming query.

(3) Utilize faster memory and caches efficiently to store application
states/objects. Thus, efficient caching policies should be utilized
to keep frequently accessed objects closer to the application.

(4) Satisfy an increasing memory demand or surge of the streaming
application to complete it successfully. Utilize multiple levels
of the cache to migrate states/objects as required seamlessly.
Provide support for configurable cache levels, so that the appli-
cation can configure the memory allocated to a particular level,
or can entirely leave out a level if needed.

3.2 System components
To achieve the desired objectives, we propose a multi-level caching
architecture for stateful stream processing, as shown in Fig. 2. We
assume that there can be multiple co-located processes (or oper-
ators) sharing the host’s resources in a server, such as the CPU,
primary memory, and disk. The core components for such a system
with multi-level caches are as follows.

(1) Cacheable Objects: The first component of the system is the
cacheable objects coming from different threads/processes. Gen-
erally, objects holding immediate computation results or the
state of an application should be cached as these objects may
need to be accessed frequently by the application. As we con-
sider a multi-level memory, an object created in the program
memory may need to be moved from the program memory to
the in-memory object store or the secondary storage. Hence,
all the cacheable objects must be serializable.

(2) Cache Manager: In a typical application/process, objects are
created dynamically in the heap space, and there is usually no
need to manage this memory. However, a stateful streaming
application might run out of program memory, so managing a
part of the heap is better to handle the surge inmemory demand.
The cache manager acts as an interface between the application
code and a managed chunk of memory in the heap space and
manages all the different memory levels, including caches. The
memory management is transparent to the application, which
means the cache manager decides where to create objects and
keeps track of state/object migration and deletion.

(3) Memory Levels and Caches: The available memory spans
across different levels, such as a 3rd party cache in the heap
space, in-memory object store, and secondary storage. The
3rd party cache located in the heap space is the first and the
fastest level of this architecture. It is located inside the pro-
cess’ dedicated heap space, so multiple threads can only share
it within that application/process. The benefit of using a 3rd
party cache such as Caffeine[28], JCache[31], Guava Cache[32],
and Ehcache[33] is that these caching libraries already have
efficient caching policies suitable to run for different work-
load types. Thus, the cache manager can just configure and
utilize the program cache to create and store objects. When
a surge of memory demand happens (i.e., the cache becomes
full), the caching policy of the 3rd party cache automatically
determines the victim object(s) for eviction. The cache manager
then migrates these objects to the next level of memory. The
in-memory object store is the second level that resides in the
primary memory (RAM) but is slightly slower than the first
level due to the communications involved to create/fetch/delete

70

A Multi-level Caching Architecture for Stateful Stream Computation DEBS ’22, June 27–30, 2022, Copenhagen, Denmark

objects by the in-memory object store module/software. How-
ever, it is still significantly faster than secondary storage. The
in-memory object store is dedicated to the host VM/server,
and it is shared by multiple applications/processes within that
server. The last and slowest level of the architecture is the sec-
ondary storage (e.g., SSD or HDD), which is only used when
objects are spilled or backed up from in-memory object stores
to the disk. The in-memory object store automatically handles
the disk spilling following a predefined eviction/snapshotting
strategy. Although secondary storage causes a significant over-
head, our proposed architecture still utilizes it. This is because
the primary memory may not be sufficiently large even after
using both program caches and the in-memory object store
databases to minimize memory consumption.

(4) Caching Policy: The 3rd party program caches run a caching
policy to determine which objects to evict from the cache when
the cache is full. In the case of an eviction, the cache manager
can process the event and fetch the evicted object from the pro-
gram cache. Then this evicted entry can be migrated to other
levels of the memory hierarchy. Depending on the application
scenario, the performance of different caching policies might
vary. However, for window-based or iterative streaming appli-
cations, a caching policy that considers both frequency and
recency should perform well because the application tends to
work on objects that have been created recently in the current
application window.

3.3 Design Choices and Trade-offs
A multi-level cache may introduce some performance degradation
to the application due to cache management, objects migration,
communication between different memory components. Thus, it
might not be suitable for all the streaming applications to use the
complete multi-level cache architecture as shown in Fig. 2. The pro-
posed architecture can be varied by deciding whether a particular
memory level or cache is needed or not. Here, we discuss the two
different design choices and their trade-offs.

(1) In-memory Object Store Only: In this approach, the fastest
level (program memory) does not incorporate any cache, and
all the objects are maintained entirely in the in-memory object
store based backend. If the in-memory store runs out of memory
(due to heavy memory demand or use of the same store from
multiple processes within the same server), it will automatically
manage the disk spilling of objects. If an application needs to
maintain a low memory footprint in the process heap space, it
should only use the in-memory object store-based state backend
to store and update states. In this case, the application only uses
the state backend for fault tolerance, and it should not carry out
updates too often. Otherwise, frequent updates to the states that
resided in the in-memory object store can degrade performance.

(2) Program Cache with In-memory Object Store: In this ap-
proach, the complete multi-level caching setup will be used
as shown in the system architecture. A program cache will
automatically manage a part of the process heap space while
creating/fetching/updating objects. In addition, if any objects
are evicted from the program cache, they should be seamlessly
migrated to the in-memory object store. There will be a slight

overhead on the program cache library in this approach. How-
ever, if the application has a large memory footprint and heavily
reuses objects, the performance improvement may outweigh
the cache management overhead. In addition, the program
cache size can also be varied to tune the memory footprint
of the application in the process heap space.

4 Prototype System Implementation
Most existing stream computing platforms are implemented in Java
or use the Java Virtual Memory (JVM) to create stream operators.
Hence, we have implemented both of the caching approaches in
Java to offer diverse cacheable data structures for representing the
state of complex streaming applications. Furthermore, we have
extended the RAPID[34] system to enable caching support for state-
ful complex stream-based data analytics applications. RAPID is
a complete stream computing platform where users can perform
interactive social media data analytics. The users can submit their
queries through web portals or Java GUIs, and the queries are col-
lected by using Apache Kafka as the message broker. In addition,
the system uses Apache Storm as the stream compute engine, where
Twitter streaming APIs collect real-time streaming data for any
chosen topic, and Storm spouts are used to pre-process and store
the streaming data in MongoDB. Finally, the system creates bolts
(compute units) to execute the user queries.
4.1 In-memory Object Store Only
In this approach, we use an in-memory object store (i.e., Redis) as
the first level of the cache. In Redis, Serializable objects can be stored
as a key-value pair. Thus, for the applications that need caching
support, the classes for which many objects are created and used
frequently must be serialized so that these objects can be stored
and fetched from in the in-memory object at any time. Note that,
for in-memory object stores such as Redis, the most outer level is
the secondary storage managed by Redis and used for the periodic
snapshot of states for fault tolerance or spilling of states in case of
memory shortage. We implement a cache management library that
provides flexible APIs to create cacheable objects for a streaming
application. The cache manager is responsible for managing the
objects entirely without any intervention from the application logic.
Thus, the entire caching logic is abstracted from the application.
We employ Redis Buckets to create objects in the multi-level caching
architecture. In this type of Redis object, the serialized objects can
be created in Redis memory as a key-value pair. If the object is
fetched by the JVM and modified, the changes will not be reflected
automatically in the Redis cache. Thus, the outdated Redis buckets
are updated after they have been fetched and modified in the JVM.
4.2 Program Cache with In-memory Object

Store
To mitigate the need to write custom caching policies tailored
to a particular application, existing caching libraries can be used
to create program caches in the JVM. These program caches can
provide near-optimal hit-rate across various application scenarios.
In this architecture, we use Caffeine[28] as the program cache. Thus,
instead of creating objects directly into the JVM, we utilize the
cache manager to create the Serialized objects in the Caffeine cache.
We employ a centralized singleton Caffeine cache for a particular
JVM so that multiple threads within the same application can use

71

DEBS ’22, June 27–30, 2022, Copenhagen, Denmark Islam, et al.

the cache without overwhelming the JVM memory capacity. A
predefined size of the Caffeine cache can be defined to occupy the
JVM memory, and the rest of the JVM memory is kept free to create
any other objects within the application. The size of the cache can
be represented either as a total weight for all the objects in the
cache (e.g., total memory consumption in MB) or a total number of
objects that the cache can hold before eviction.
The Caffeine cache uses the TinyWindowLFU[35] caching policy,
which considers both frequency and recency. Thus the caching pol-
icy works well across various application scenarios with different
cache access patterns. As window-based streaming algorithms use
the most recent and frequently occurring states, the caching policy
can help to keep most of the required objects by the algorithm in
the cache. Only when the size of the cache is full the caching policy
will automatically decide which objects need to be evicted. As the
evicted objects/states might be needed in subsequent operations,
we store the evicted objects in the secondary caching level (Redis).
If the object is needed in the future (in case of a cache miss), the
object is loaded from the Redis cache to the Caffeine cache. Note
that, in this approach, objects are always used/updated in the JVM
to improve the performance of the application. Thus, if an applica-
tion does not require a large memory capacity, all the objects will
reside in the JVM (Caffeine cache), and the application will not be
impacted by the performance degradation caused by the slower
memory (Redis). Note that, using any data structure or caching
such as Caffeine will introduce some performance overhead due to
the cache management compared to the use of bare JVM memory.
Note that, this paper focuses on the architectural perspective of
the memory limitation of streaming applications. We have utilized
the existing available technological tools (e.g., Caffeine, Redis) to
implement the prototype system. However, the proposed archi-
tecture can be extended to support other technological tools and
design choices. In fact, while developing the prototype system, we
have considered alternatives such as Memcached, Hazelcast, etc.
These alternatives did however showcased subpar performance as
compared to the Caffeine and Redis combination.
5 Multi-level Caching Library
In this section, we provide a brief discussion on the various core
components of the multi-level caching library1 implemented in
Java. Fig. 3 provides a class diagram for the implemented multi-
level caching library, which can be used in a streaming application
to provide caching support with flexible data structures, so that
complex states of the application can be represented easily. De-
pending on the application scenario, the complete multi-level setup
can be used where both the program cache (i.e., Caffeine) and the
in-memory object store (i.e., Redis) can be used as different levels
of the cache. In addition, a particular level of the cache can also
be disabled. For example, if an application requires cacheable data
structures with only Redis as the cache, the program cache can be
disabled. Now, we briefly discuss the core classes of the caching
library as follows.
• Cacheable: This is an interface that must be implemented by
a class for which the created objects can be cached if required.
When an object is created for a class that inherits this inter-
face, the object automatically gets a unique ID. This unique

1https://github.com/tawfiqul-islam/MemoryManagerJVMRedis

id is important because the cache works as a map where each
value/object has to be associated with a key. For example, if
we require to cache the objects from an array, there is no key
associated with these objects. Hence, providing an interface to
manage the unique keys used with the various objects addresses
this problem.

• ApplicationDriver: This is the main application code which
runs a particular streaming algorithm. The application can
choose to create any number of cacheable objects or data struc-
tures holding cacheable objects. Whenever creating any object,
the application driver should use the CaffeineObjectFactory.
Depending on the caching approach, the underlying memory
management API decides whether to create the object in the
Caffeine cache or Redis.

• CacheableAppClass: There can be one or more Cacheable
classes for which the objects can be cached if required. Note
that all these classes must implement a Serializable interface
to ensure that cached objects can be serialized/deserialized
seamlessly across different memory levels.

• CaffeineCacheManager: This is the primary cache manage-
ment class that manages the underlying memory levels. This
class can be configured to choose whether to use a primary
program cache such as Caffeine and set the size of the Caffeine
cache if used. In addition, it can also be used to configure the
in-memory Redis store. Data structures that hold cacheable
objects such as CaffeineHashMap, CaffeineArrayList, and Caf-
feineHashset are also managed from this class. If the Caffeine
cache is used, this class creates and holds the data structure for
a Caffeine cache shared across multiple threads within the same
application/process. Thus, objects from different data structures
(e.g., CaffeineHashMap) or different threads are maintained by
using the unique keys. When a particular object is created, mi-
grated, or deleted, the cache manager performs the necessary
memory management tasks associated with the particular oper-
ation. For example, if an object is accessed, the cache manager
can check whether it is available in the primary cache (Caf-
feine) and passes a valid reference of this Caffeine object to the
application. If the object does not exist in the primary cache,
the object is loaded from the other levels to the primary level,
and then a valid reference is passed on to the application code.
Thus, from an application’s perspective, the objects are always
accessible from the object reference it holds, but underneath,
the cache manager resolves the valid reference to the object.

• CaffeineObjectFactory: This factory class is used to create
objects in the Caffeine cache. An application can create regular
JVM objects of a cache-enabled class if no caching support is
required. However, if caching support is required, the cacheable
objects must be created through the CaffeineObjectFactory, so
that the object reference can always be resolved from the cache
by the CacheManager.

• RedisObjectFactory: This factory class is used to create, fetch
or delete Redis objects. The application code does not have ac-
cess to this class and is exclusively used by the CaffeineCache-
Manager as required.

72

https://github.com/tawfiqul-islam/MemoryManagerJVMRedis

A Multi-level Caching Architecture for Stateful Stream Computation DEBS ’22, June 27–30, 2022, Copenhagen, Denmark

Figure 3: Class diagram for the multi-level caching library. Application driver is a sample application code that can use any type
of cacheable data structure to represent a complex state. The cache manager provides a transparent interface and automatically
manages the state updates/migrations. The application code can also utilize the cacheable interface to create cacheable objects.

How to use the Cacheable API: The caching library can be im-
ported in Java-based stream application development. As an exam-
ple, consider an application that requires an ArrayList where any
element of the ArrayList can be cached to provide faster access.
The application developer needs to inherit the Cacheable interface
for the class objects which will be stored in the CaffeineArrayList.
In addition, all the array objects need to be created through the Caf-
feineObjectFactory. Now, the CaffeineArrayList supports normal
array operations that the application developer can use. The un-
derlying memory management layer will only keep the associated
unique keys for each object in its internal data structure, but the
actual objects will be kept in one of the memory levels. Each access
to an individual object may cause a cache hit/miss for the Caffeine
cache. If the Caffeine cache becomes full, the memory manager will
automatically migrate evicted objects from the Caffeine cache to
the Redis cache. Thus, in case of a Caffeine cache miss, the desired
object will be resolved from the Redis cache. Similarly, in case of
Caffeine cache hit, the object will be resolved from the cache for
faster access.
Note that the multi-level caching library can be extended to add
more data structures. Although we have chosen Caffeine as the
program cache and Redis as the secondary cache, the proposed
library can be extended to support any other program caches and
in-memory object store databases. The implemented caching library
can be used with JVM-based stream computing frameworks such
as Apache Storm, Apache Spark, and Apache Flink, as it is written
in Java. Thus, the streaming application needs to be written in
Java, and should import the caching library to use cacheable data
structures instead of using typical non-cacheable data structures
provided by the programming language.

6 Experiment Setup
In this section, we first discuss the benchmark applications. Then
we discuss the state management approaches implemented to be
compared in the performance evaluation.
To conduct the experiments, the RAPID[34] system was deployed
in a Virtual Machine (VM) located in the Nectar Research Cloud2.
The VM has 8 CPU cores, 32 GB of memory, and 100 GB of disk
storage. In addition, the caching library is plugged into the RAPID
system to provide caching support for the benchmark applications.
The caching library uses Redisson 3.12.0 for communicating with
Redis for state migration and Caffeine 2.9.2 as a program cache.
Note that, the RAPID system utilizes Apache Storm as its compute
engine. Hence, both the synthetic and the real applications run as
storm bolts (processes) in the system.
6.1 Benchmark Applications
(1) Synthetic Application: We have developed a synthetic ap-

plication in Java to evaluate the application performance and
memory footprint for different state management approaches.
The application collects data from a file stored in the disk and
dynamically creates objects for these files in real-time to mimic
a sizeable increasing state. Hence, each object contains a large
file (approximately 50MB), which the application may require
access to make changes. The JVM heap space may not be suf-
ficiently large to hold all these data objects that need to be
processed, and the access request to any data object can be
repeated. The motivation behind the design of this application
is to simulate the out-of-heap-space problem that occurs with
memory-hungry streaming applications.

2https://ardc.edu.au/services/nectar-research-cloud/

73

https://ardc.edu.au/services/nectar-research-cloud/

DEBS ’22, June 27–30, 2022, Copenhagen, Denmark Islam, et al.

To present a realistic object access pattern to different state
management approaches, we have generated the access pattern
by following a Zipf distribution. There are 102 unique objects,
with 1000 accesses to these objects in the experiment. The JVM
heap space memory is capped at 3GB (3000MB) by using VM
options in the JVM (-Xmx 3000MB) so that we can simulate the
limited heap space memory scenario. For the Caffeine-Redis-
based multi-level cache, the Caffeine cache size is varied from
10% to 30% of the total JVM heap space with a 5% increment. In
addition, we have utilized a weighted loading caching for Caf-
feine so that the cache eviction triggers when the total memory
footprint of the cached objects exceeds the predefined maxi-
mum weight of the cache. All the experiments are conducted
three times, and the average results are taken.

(2) Real application:We have chosen the online Spatio-temporal
event detection algorithm[36] as our real benchmark applica-
tion. This algorithm uses social media data streams to detect
events at different time and space resolutions. The algorithm
utilizes a quadtree-based method to split the geographical space
into multi-scale regions based on the density of social media
data. Then, an unsupervised statistical approach is performed
to identify regions with an unexpected density of social posts.
The algorithm also estimates the event duration by merging
events in the same region at consecutive time intervals. A post-
processing stage is used to filter fake or incorrect events. This
application uses rolling windows to process Tweets in a partic-
ular time interval where the time interval can be multiple days.
Thus, as the application progresses, the size of the quadtree
increases. In addition, the application needs to update states
(quadtree join, merge, and prune) in real-time. This algorithm
requires representing and updating complex computation states.
We have implemented it with our proposed multi-level caching
library to enable caching support for the quadtree structure.
The motivation behind the design of this application is to ob-
serve the applicability of the proposed caching library in a
real-time application that requires caching of complex object
states.
We collected Twitter streaming data for four different time
intervals from December 1, 2020, to December 8, 2020, to be
used with the event detection algorithm. The four intervals
have an increasing number of tweets, where the number of
collected tweets are 120k, 131k, 157k, and 172k, respectively.
We have varied the size of the Caffeine cache from 10% to 30% of
the total collected tweets with a 5% increment. In addition, we
have utilized a size-based loading caching for Caffeine so that
the cache eviction triggers when the total number of cached
objects exceeds the predefined maximum size of the cache. All
the experiments are conducted three times, and the average
results are taken.

6.2 State Management Approaches:
We have implemented the benchmark applications in the proposed
multi-level caching approach, the Redis-only state management
backend, and as a native JVM-based application (the best baseline
regarding performance).
(1) JVM-based (native application): This is a native implementa-

tion of the benchmark applications, where no caching support

is provided. However, the algorithm only uses the JVM heap
space to maintain application states. Thus, the JVM-only ap-
proach serves as the fastest baseline, which can be used to
compare the proposed approaches for streaming windows that
fit into the memory.

(2) Redis-only Cache: In this approach, the Redis cache is used
to store all the objects of an application to save up critical heap
space. Whenever access to an object is required, the object state
is migrated from the Redis to the JVM for the application, and
then the updated state is propagated back to Redis.

(3) Caffeine-Redis Cache: This is a multi-level caching approach
that spans from the JVM heap space to the Redis cache. The
cache manager manages a part of the JVM heap space with
the Caffeine cache. Thus, objects are created and stored in
the Caffeine cache for faster performance. However, when the
cache is full (either cache size limit reached or the total cache
weight limit is reached), the caching policy in Caffeine starts
evicting objects. Therefore, we seamlessly migrate these objects
to Redis so that they can be fetched later if required.

7 Performance Evaluation - Synthetic
Application

We first evaluate the performance of various state management ap-
proaches while running the synthetic application as the benchmark.
Then, we present the application performance across different al-
ternatives coupled with the memory footprint incurred by these
approaches. Finally, we present the effect of cache sizes on cache hit
rates for the multi-level cache-based state management approach.
7.1 Evaluation of Application Performance
As the synthetic application demonstrates the characteristics of a
real-time application that is memory-hungry and makes real-time
access to a large amount of data, the JVM-based baseline runs out
of memory after completing the application only partially. Thus, to
conduct the relative performance analysis between the proposed
approaches, we collect the application completion times up to a
point when the JVM approach fails. In addition, we record the
completion times for an entire run of the synthetic application for
the Redis-based approach and the proposed multi-level approach
with varying cache sizes. The relative slowdown for an approach
as compared to the native JVM is calculated by:

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝑆𝑙𝑜𝑤𝑑𝑜𝑤𝑛 =
𝑇𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑

𝑇𝐽𝑉𝑀

where 𝑇𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 is the time for the application to complete in a
chosen interval by a proposed approach. Thus, the lower the relative
slowdown, the better (and closer) an approach performs to the
native JVM.
Fig. 4a depicts the relative slowdowns incurred by various state
management approaches as compared to the native JVM implemen-
tation. Note that these results are collected from a partial run of the
application (a sequence of 382 accesses to different objects by the ap-
plication), as the JVM fails after this point. The results indicate that
the Redis-based state backend performs the worst as it creates and
manages all the objects in Redis, resulting in a 12.3x performance
slowdown. However, the relative slowdown is lower for the multi-
level cahing-based approach and varies between (2.2x to 1.8x) for
different cache sizes. As shown in Fig. 4b, the Redis-based approach

74

A Multi-level Caching Architecture for Stateful Stream Computation DEBS ’22, June 27–30, 2022, Copenhagen, Denmark

Redis CR-10% CR-15% CR-20% CR-25% CR-30%
0

2

4

6

8

10

12

R
e
la

ti
ve

 S
lo

w
d
o
w

n

(a) Relative Slowdown from partial run (lower is
better)

Redis CR-10% CR-15% CR-20% CR-25% CR-30%
0

50

100

150

200

C
o
m
p
le
ti
o
n
Ti
m
e
(s
)

(b) Application Completion Time (lower is better)

JVM Redis CR-10%CR-15%CR-20%CR-25%CR-30%
0

500

1000

1500

2000

2500

3000

M
e
m

o
ry

 F
o
o
tp

ri
n
t

(M
B
)

(c) Memory Footprints (lower is better)

10% 15% 20% 25% 30%
Cache Size

90

91

92

93

94

95

96

C
a
ch

e
 H

it
 R

a
te

 (
%

)

(d) Caffeine Hit Rates (higher is better)

Figure 4: Experimental results for different state management approaches while running the synthetic application. (a) shows
the relative slowdowns of different state management approaches as compared to the native JVM-based approach for a partial
run of the application, (b) shows the completion times of different approaches for a complete run of the synthetic application,
(c) shows the comparison of the memory footprints for different approaches, and (d) shows cache hit rates for the multi-level
caching based state management approach with varying cache sizes.

takes 212 seconds on average for completing the execution of the
application. The multi-level caching-based approach showcases
stable performance, and the application completion time reduces
linearly with the increase of the cache size. It can be observed that
a 30% cache size of the total JVM memory performs the best and
completes the application within 25 seconds.
7.2 Evaluation of Memory Footprint
In this evaluation, we investigate the memory usage of all the ap-
proaches. As depicted in Fig. 4c, the JVM memory footprint is high-
est (3GB) as it tries to fit all the data into the heap space. Even when
using the highest amount of heap space, the JVM-based approach
still fails to complete the execution of the application. All the other
compared approaches have lower memory footprints than the JVM
and can still complete the execution of the application. The Redis-
based approach consumes the smallest amount of memory as all
the objects are always kept in the Redis memory, outside the heap
space. Note that, the memory footprint incurred by Redis includes
only the memory utilized in the JVM, but excludes the total Redis
memory used in a host node. For the multi-level caching approach,
the memory footprint increases with cache size. Even though the
Redis-based approach has a low memory footprint, the applica-
tion performance is degraded significantly (the approach sacrifices
performance to save memory). On the other hand, the multi-level
caching approach reduces the memory footprint and showcases
stable performance (achieving a delicate balance between memory

usage and performance overhead). Lastly, depending on the applica-
tion scenario, an appropriate cache size can be selected to tune the
application to be either memory-efficient or performance-efficient.
7.3 Effects of Cache Sizes on Cache Hit Rate
This evaluation observes the effects of cache sizes on the cache hit
rate percentage produced by the multi-level caching approach. In
a complex stream-based data analytics algorithm, it is crucial to
produce high hit rates since a cache miss implies that the objects
need to be fetched from the secondary level (in-memory object
store such as Redis), which will negatively impact the application
performance. As highlighted in Fig. 4d, even for a small cache with
only 10% of the JVM heap, the cache hit is above 90%. Furthermore,
as the size of the cache increases, the cache hit rates also increase.
8 Performance Evaluation - Real Application
This section evaluates the performance of various state manage-
ment approaches while running the real event detection application
as a benchmark. We compare the performance of these approaches
in terms of application performance. We also demonstrate the ef-
fects of cache management overhead and cache sizes.
8.1 Evaluation of Application Performance
We first evaluate the performance of different caching approaches
for the event detection algorithm. As the JVM-based native ap-
proach serves as the fastest baseline, we have used the application
completion time for the JVM to calculate the relative slowdown

75

DEBS ’22, June 27–30, 2022, Copenhagen, Denmark Islam, et al.

Redis CR-10% CR-15% CR-20% CR-25% CR-30%
0.0

0.5

1.0

1.5

2.0

R
e
la

ti
ve

 S
lo

w
d
o
w

n

(a) Interval-1 (#Tweets =120k)

Redis CR-10% CR-15% CR-20% CR-25% CR-30%
0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
e
la

ti
ve

 S
lo

w
d
o
w

n

(b) Interval-2 (#Tweets =131k)

Redis CR-10% CR-15% CR-20% CR-25% CR-30%
0

1

2

3

4

5

R
e
la

ti
ve

 S
lo

w
d
o
w

n

(c) Interval-3 (#Tweets =157k)

Redis CR-10% CR-15% CR-20% CR-25% CR-30%
0

1

2

3

4

5

6

R
e
la

ti
ve

 S
lo

w
d
o
w

n

(d) Interval-4 (#Tweets =171k)

Figure 5: Relative performance comparison of the Redis-only and the Caffeine-Redis based multi-level caching approach
relative to the JVM-based implementation of the event detection algorithm. (a)-(d) show the relative slowdowns observed
for different time intervals: e.g., (a) has the smallest interval, whereas (d) has the largest interval in terms of the number of
collected Tweets.

incurred by the other state management approaches. Note that, for
comparing with the best baseline, we assume that the application’s
data perfectly fit in the JVM memory for the JVM approach so that
the application can be completed within the shortest time. Next, we
experimented with varying cache sizes for the proposed multi-level
caching approach to investigate whether the application perfor-
mance is comparable to the native JVM when we have a limited
memory capacity due to smaller cache sizes. This evaluation will
help us understand whether the process heap size reduction can be
tolerated with managed caches that take limited space in a heap.
Fig. 5 shows the relative slowdown comparison of the native JVM-
based implementation of the event detection algorithm with both
Redis-based and the Caffeine-Redis multi-level cache-based state
management implementations for four different time intervals.
There is no memory, object size, or cache size limit on the JVM.
Thus, its performance is always the same. For the Redis-based ap-
proach, the state of objects is directly saved into Redis. Thus, the
objects are fetched from Redis whenever the application needs to
change/update states. When the total number of tweets increases,
many states need to be saved in the Redis backend, resulting in a
performance slowdown for the application. As shown in Fig. 5a, for
a smaller interval, the performance slowdown is 2x for the Redis-
based approach as compared to the native JVM implementation.
However, as the interval size increases, performance slowdown also
increases (Fig. 5b, 5c, 5d for up to 6x). The Caffeine-Redis implemen-
tation shows varying performance with different cache sizes. For
small and medium intervals (Fig. 5a-5b), the slowdowns incurred for

different cache sizes range between only 1.1 (CR30% for interval-1)
to 1.25 times (CR10% for interval-2). For large intervals (Fig. 5c-5d),
when the cache size is smaller (CR10% to CR15%), the performance
slowdown observed is up to 3 times. However, as the cache size
increases, the performance improves, and the application comple-
tion time decreases as most of the application states/objects can be
accessed directly from the Caffeine cache due to an increased num-
ber of hits. As an example, when the cache size is 30% in interval-4
(Fig. 5d), it only produces a 1.4 times slowdown as compared to
the native JVM. Thus, when the number of objects exceeds the size
of the cache, the caching policy automatically selects the victim
objects for eviction, which are migrated to the Redis cache. If these
objects are accessed again, they are automatically loaded from the
Redis cache due to a cache miss event in the Caffeine cache.
8.2 Effects of Cache Management Overhead
In this evaluation, we investigate whether there is an overhead
associated with using the multi-level Caffeine-Redis based caching
approach. This experiment is done with varying cache sizes, but
all the caches are large enough to fit all the application data. Thus,
the performance slowdown incurred in this experiment will result
from cache management only. Fig. 6 shows the relative performance
slowdown of the Caffeine-Redis approach for varying cache sizes.
When a JVM based application is launched, the first requests it re-
ceives are generally significantly slower than the average response
time. This warm-up effect is due to class loading and bytecode
interpretation at startup. After 10k iterations, the main code path

76

A Multi-level Caching Architecture for Stateful Stream Computation DEBS ’22, June 27–30, 2022, Copenhagen, Denmark

20000 40000 60000 80000 100000
#Tweets

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25
R
e
la

ti
ve

 S
lo

w
d
o
w

n
Cache Size

10k
20k
30k
40k
50k

Figure 6: Effects of cache management overhead on the appli-
cation performance for varying cache sizes of the proposed
multi-level cache. The relative slowdowns are calculated in
terms of the native JVM performance of the application.

is compiled and ’hot’. Thus, when there are only a small number of
tweets (<10k), the native JVM performance is worse than the Caf-
feine cache. For smaller cache sizes (around 10k to 20k), the Caffeine
cache management exhibits warm-up delays, which result in slight
performance slowdowns (around 10-15%). However, a surprising
trend can be observed for huge caches with many data (tweets). For
these cases, the native JVM application experiences slowdowns due
to many object creations and deletions, which result in Garbage
Collection (GC) overheads. This overhead increases with interval
size. For large intervals, the Caffeine-Redis cache overcomes the
warm-up delay and performs better than the native JVM as it does
not suffer from the GC overhead.
8.3 Effects of Cache Size
We now discuss the cache statistics recorded from the Caffeine
cache while running the event detection algorithm for various
cache sizes over a large interval (interval-4 with 171k objects).
When the cache size is smaller, many cache evictions trigger the
migration of objects to the Redis cache. As the application needs
many of these objects in the subsequent operations, the Caffeine
cache misses are resolved from the Redis cache. As communicating
and fetching objects from Redis is slower than the process heap
memory, Redis load time is the main performance bottleneck of
the application. When the cache size is around 30% of the total
objects, the cache is big enough to hold most of the objects so
that only a few eviction happens (Fig. 7a), and a very high rate
(99.99%) is achieved. The Caffeine cache policy performs well even
for smaller cache sizes as the cache hit rate is above 99.5% for a
cache size equal to 10% of the JVM heap. Fig. 7b presents the cache
load time statistics with increasing cache size. When the cache size
is small, many cache evictions trigger the migration of objects to
the Redis cache. As the application needs many of these objects in
the subsequent operations, the Caffeine cache misses are resolved
from the Redis cache, so the Redis load time increases. Table 1 and
Table 2 provide the raw numbers for hits/misses, and the Redis load
times, respectively.
9 Conclusions
Stream processing is used in many real-time applications that deal
with large volumes, velocities, and varieties of data. For complex
data analytics algorithms, the intermediate states of computations

might need to be retained in memory, triggering a considerable
surge in memory demand to run the application successfully. This
paper proposes a multi-level caching architecture to mitigate the
surge of memory demand from the processes running complex
streaming data analytics and ML algorithms. We have implemented
two approaches with the caching architecture to support scalable
state management. The first approach uses an in-memory object
store as a state backend and provides diverse data structures to
represent complex states. The second approach uses a program
cache in the heap space to reduce the communication overhead
with the in-memory object store for faster performance. We have
provided a prototype multi-level caching library in Java that can
be used to implement scalable streaming applications. The underly-
ing cache management completely abstracts the multi-level cache
implementation from the application and handles seamless migra-
tion of states/objects across different levels of the cache. We have
implemented a real-time streaming algorithm in Apache Storm
and extended the algorithm implementation with the proposed
caching library. We have also implemented a synthetic application
to demonstrate the limited memory problem in the process heap
and showcased how the implemented approaches tackle the issue.
We have also conducted extensive experiments with real workloads
to compare the performance of the proposed approach against
the fastest implementation. The experimental results showed that
our proposed multi-level caching architecture could handle large
computational windows.
9.1 Limitations and Future Work
In the future, we plan to extend this work by exploring custom
caching policies to be used for migrating objects across various
caching levels instead of using the default policy of the Caffeine
cache. We plan to investigate the problem of optimal allocation
of memory to each layer of the cache. Currently, we use a fixed
amount of memory for each layer, but the implementation supports
configurable memory allocation for each layer. Thus, we plan to
extend this work by making the allocation workload agnostic. We
also want to extend more memory-intensive ML algorithms with
the proposed caching architecture to investigate the performance in
various application and workload scenarios. In addition, we would
like to implement more cacheable data structures into the caching
library so that it would be easier to support diverse and complex
states. We plan to explore the proposed caching architecture with
different types of program caches and in-memory object stores, and
deploy our solution to different stream computing platforms. This
will allow us to conduct evaluation among the native frameworks
with and without the cache-support.
Acknowledgments
This research is funded by the Defence Science and Technology
Group (DSTG), Edinburgh, South Australia, under contract MyIP:
7293.
References
[1] Apache storm. https://storm.apache.org/. Accessed: 2022-05-18.
[2] Matei Zaharia, Reynold S. Xin, PatrickWendell, Tathagata Das, Michael Armbrust,

Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J.
Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker, and Ion Stoica. Apache
spark: A unified engine for big data processing. Communications of the ACM,
59(11):56–65, 2016.

[3] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. Apache flink: Stream and batch processing in a single engine.

77

https://storm.apache.org/

DEBS ’22, June 27–30, 2022, Copenhagen, Denmark Islam, et al.

10% 15% 20% 25% 30%
Cache Size

99.70

99.75

99.80

99.85

99.90

99.95

100.00

C
a
ch

e
 H

it
 R

a
te

 (
%

)

(a) Hit Rate

10% 15% 20% 25% 30%
Cache Size

0

10

20

30

40

50

60

70

R
e
d
is

 L
o
a
d
 T

im
e
 (

s)

(b) Redis Load Times.

Figure 7: Effects of cache sizes for the multi-level Caffeine-Redis cache based approach. (a) shows the hit rates for different
cache sizes, (b) shows the Redis load times caused from the cache misses by different cache sizes.

Table 1: Caffeine Cache Hits and Misses Statistics
5% 10% 15% 20% 25%

hits misses hits misses hits misses hits misses hits misses
145268136 512481 142365460 470148 130905414 244735 131106445 43704 131147852 2297

Table 2: Redis Load Time Statistics
Cache Size 5% 10% 15% 20% 25%
Redis Load
Time (s) 139.62 73.01 44.13 13.58 1.17

Bulletin of the IEEE Computer Society Technical Committee on Data Engineering,
36(4), 2015.

[4] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher
Kellogg, Sailesh Mittal, Jignesh M Patel, Karthik Ramasamy, and Siddarth Taneja.
Twitter heron: Stream processing at scale. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, pages 239–250, 2015.

[5] Raul Castro Fernandez, Matteo Migliavacca, Evangelia Kalyvianaki, and Peter
Pietzuch. Integrating scale out and fault tolerance in stream processing using
operator state management. Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 725–736, 2013.

[6] Tiziano Matteis and Gabriele Mencagli. Parallel patterns for window-based
stateful operators on data streams: An algorithmic skeleton approach. Int. J.
Parallel Program., 45(2):382–401, apr 2017.

[7] Xunyun Liu and Rajkumar Buyya. Resource management and scheduling in
distributed stream processing systems: A taxonomy, review, and future directions.
ACM Computing Surveys, 53(3), may 2020.

[8] Quoc-Cuong To, Juan Soto, and Volker Markl. A survey of state management in
big data processing systems. The VLDB Journal, 27, 12 2018.

[9] Valeria Cardellini, Matteo Nardelli, and Dario Luzi. Elastic stateful stream pro-
cessing in storm. In 2016 International Conference on High Performance Computing
and Simulation (HPCS), pages 583–590. IEEE, jul 2016.

[10] Top 10 algorithms in data mining, volume 14. 2008.
[11] Theodore Johnson, S.Muthukrishnan, and Irina Rozenbaum. Sampling algorithms

in a stream operator. In Proceedings of the 2005 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’05, page 1–12, New York, NY, USA,
2005. Association for Computing Machinery.

[12] Ioannis Mitliagkas, Michael Borokhovich, Alexandros G. Dimakis, and Constan-
tine Caramanis. Frog wild! - Fast PageRank approximations on graph engines.
Proceedings of the VLDB Endowment, 8(8):874–885, 2015.

[13] Wenting Liu, Guangxia Li, and James Cheng. Fast PageRank approximation by
adaptive sampling. Knowledge and Information Systems, 42(1):127–146, 2015.

[14] Ziv Bar-Yossef and Li Tal Mashiach. Local approximation of pagerank and reverse
pagerank. International Conference on Information and Knowledge Management,
Proceedings, pages 279–288, 2008.

[15] Trident state. https://storm.apache.org/releases/current/Trident-state.htm. Ac-
cessed: 2022-03-18.

[16] Shadi A. Noghabi, Kartik Paramasivam, Yi Pan, Navina Ramesh, Jon Bringhurst,
Indranil Gupta, and Roy H. Campbell. Samza: Stateful scalable stream processing
at linkedin. Proc. VLDB Endow., 10(12):1634–1645, aug 2017.

[17] Jay Kreps, Neha Narkhede, Jun Rao, et al. Kafka: A distributed messaging system
for log processing. In Proceedings of the NetDB, volume 11, pages 1–7, 2011.

[18] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauly, Michael J Franklin, Scott Shenker, and Ion Stoica. Resilient

distributed datasets: A {Fault-Tolerant} abstraction for {In-Memory} cluster
computing. In 9th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 12), pages 15–28, 2012.

[19] Paris Carbone, Stephan Ewen, Gyula Fóra, Seif Haridi, Stefan Richter, and Kostas
Tzoumas. State management in apache flink: Consistent stateful distributed
stream processing. Proc. VLDB Endow., 10(12):1718–1729, aug 2017.

[20] Siying Dong, Mark Callaghan, Leonidas Galanis, Dhruba Borthakur, Tony Savor,
andMichael Strum. Optimizing space amplification in rocksdb. In CIDR, volume 3,
page 3, 2017.

[21] Rocksdb: A persistent key-value store for fast storage environments. http://
rocksdb.org/. Accessed: 2022-03-18.

[22] Redis. https://redis.io. Accessed: 2022-05-18.
[23] Hazelcast: The real-time intelligent applications platform. https://hazelcast.com/.

Accessed: 2022-03-18.
[24] Introduction to redisson live objects. https://gist.github.com/jackygurui/

f889744539fe2e7e2152a318f90153b3. Accessed: 2022-03-18.
[25] E-Storm: Replication-Based State Management in Distributed Stream Processing

Systems. Proceedings of the International Conference on Parallel Processing, pages
571–580, 2017.

[26] Kasper Grud Skat Madsen, Philip Thyssen, and Yongluan Zhou. Integrating
fault-tolerance and elasticity in a distributed data stream processing system.
In Proceedings of the 26th International Conference on Scientific and Statistical
Database Management (SSDBM’14), 2014.

[27] Yingjun Wu and Kian-Lee Tan. Chronostream: Elastic stateful stream computa-
tion in the cloud. In 2015 IEEE 31st International Conference on Data Engineering,
pages 723–734, 2015.

[28] Caffeine: A high-performance caching library for java. https://github.com/ben-
manes/caffeine. Accessed: 2022-03-18.

[29] Gil Einziger, Ohad Eytan, Roy Friedman, and Ben Manes. Adaptive software
cache management. In Proceedings of the 19th International Middleware Confer-
ence, Middleware ’18, page 94–106, New York, NY, USA, 2018. Association for
Computing Machinery.

[30] Gil Einziger, Ohad Eytan, Roy Friedman, and Ben Manes. Lightweight robust
size aware cache management. ArXiv, abs/2105.08770, 2021.

[31] Jianyu Fu, Yubo Liu, and Guangming Liu. Jcache: Journaling-aware flash caching.
IEEE Access, 8:61289–61298, 2020.

[32] Guava cache. https://github.com/google/guava/wiki/CachesExplained/. Accessed:
2022-03-18.

[33] Ehcache. https://www.ehcache.org/. Accessed: 2022-03-18.
[34] Kwan Hui Lim, Sachini Jayasekara, Shanika Karunasekera, Aaron Harwood,

Lucia Falzon, John Dunn, and Glenn Burgess. Rapid: Real-time analytics platform
for interactive data mining. In Machine Learning and Knowledge Discovery in
Databases, pages 649–653, Cham, 2019. Springer International Publishing.

[35] Gil Einziger, Roy Friedman, and Ben Manes. Tinylfu: A highly efficient cache
admission policy. ACM Trans. Storage, 13(4), nov 2017.

[36] Yasmeen George, Shanika Karunasekera, Aaron Harwood, and Kwan Hui Lim.
Real-time spatio-temporal event detection on geotagged social media. Journal of
Big Data, 8(1):1–28, 2021.

78

https://storm.apache.org/releases/current/Trident-state.htm
http://rocksdb.org/
http://rocksdb.org/
https://redis.io
https://hazelcast.com/
https://gist.github.com/jackygurui/f889744539fe2e7e2152a318f90153b3
https://gist.github.com/jackygurui/f889744539fe2e7e2152a318f90153b3
https://github.com/ben-manes/caffeine
https://github.com/ben-manes/caffeine
https://github.com/google/guava/wiki/CachesExplained/
https://www.ehcache.org/

