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Abstract
Due to the importance of road freight, there is a significant cost
of delaying freight vehicles on the road. In this work, we focus on
freight vehicle optimization by reducing delays at intersections.
Our simulation study evaluates the effectiveness of an autonomous
intersection management strategy that prioritizes connected freight
vehicles using intelligent traffic lights. We simulate a wide range of
traffic scenarios on our microscopic traffic simulator. Our results
show that the strategy can help reduce the delay of freight vehicles
with a minimal impact on other vehicles in a real road network. Our
simulations also reveal the scenarios where the strategy works best
and where it should be avoided. Effects of individual parameters
are also measured through simulations.

CCS Concepts
• Computing methodologies→ Simulation evaluation; • Ap-
plied computing→ Transportation.
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1 Introduction
Road freight is the most valuable mode in freight shipments [4]. A
delay of freight vehicles on the road can lead to significant financial
losses [9]. As freight vehicles take a longer time to decelerate and
accelerate compared to passenger cars, slowing down at traffic
lights can have a detrimental impact on the flow of freight vehicles.
Therefore, in this work we focus on the delays caused by slowdown
at traffic lights. To mitigate such delays, one needs to reduce the
number of red lights on the path of freight vehicles. To achieve
this, intelligent transportation systems can apply autonomous
intersection management (AIM) strategies that prioritize freight
vehicles at traffic lights. The AIM strategies are technically feasible
thanks to the availability of connected vehicles and adaptive traffic
control systems. Several simulation studies have explored the AIM-
based freight vehicle prioritization [16, 20, 29]. Implementing the
AIM strategies in the real world was also attempted, though at a
small scale [28]. All the existing studies show limitations when
evaluating the impact of AIM strategies. They either use a small set
of parameters or focus on simple networks with a few intersections.
There is still a lot to learn before large-scale deployment of the AIM
strategies can materialize. We fill the gap and aim to broaden the
understanding by simulating a large number of traffic scenarios
using road networks at different scales.

Our work is inspired by a recent trial of connected trucks in
Wollongong, Australia, where the trucks requested priority to pass
intersections by sending certain information to a traffic control
system. The information was collected via Telstra mobile network.
Telstra is an Australian telecommunication company that supports
innovative vehicle-to-infrastructure applications. The trucks par-
ticipated in the trial used the fleet tracking solution from MTData,
a subsidiary of Telstra that provides connected vehicle technology.
The area of the trial is shown in Figure 1. The roads travelled by the
connected trucks are highlighted in the figure. The trucks requested
priority for passing 5 intersections, each of which has a unique ID
as shown in the figure. The data collected from the trial shows that
the existing traffic control system can accurately track connected
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Figure 1: An area inWollongong, Australia, where a trial of connected
trucks was conducted.

trucks that are approaching intersections. The success of the trial
proves that there is an actual use case for AIM. However, before the
deployment of AIM, which will require significant investments, it
is important to have a comprehensive understanding of the impact
of AIM on transportation networks. For this reason, Telstra collabo-
rated with us to create an AIM strategy and the experimental setup
based on the results from the trial.

Figure 2: Prioritizing a connected truck using AIM. Traffic lights 𝐿1
and 𝐿2 are along the route of a connected truck𝑇1. Traffic light color
at each entry point to an intersection is shown.𝑇1 is prioritized at
𝐿1 as the truck is within the detection distance from the light. The
three cars (𝐶1 to𝐶3) are not connected to the system.

Our AIM strategy assumes that connected freight vehicles can
periodically send their GPS position, speed and route to nearby
traffic infrastructures. Once a connected freight vehicle has arrived
within a certain distance to an intelligent traffic signal, it is detected
by the traffic signal, which will then adjust the color phase for
the vehicle. A simple example is illustrated in Figure 2, where a
connected truck is going to pass two intersections along its route.
In the example, traffic light 𝐿1, which has detected the truck, would
keep green for the truck until a maximum green light period is
reached or when the truck has crossed the intersection. As the
truck would not need to stop at 𝐿1, the delay of the truck at the
intersection would be minimized. Other vehicles around the truck
may also benefit from the traffic light prioritization. In this example,
car 𝐶1 would pass the intersection without delay. Traffic light 𝐿2
does not turn green for the truck at this moment because the truck
is beyond the detection distance from 𝐿2. Despite the potential
benefit of freight vehicle prioritization, traffic in some parts of a
road network can be negatively impacted by the dynamic change

of traffic lights. For example, in Figure 2, car 𝐶2 may experience a
longer delay as it has to stop at 𝐿1 for the truck.

To comprehensively evaluate the impact of the AIM strategy,
we first identify a range of parameters that can affect traffic per-
formance in a road network. We then run simulations on a real
road network to test the performance of the strategy under realistic
settings at a large scale. After that, we perform a multi-dimensional
parameter scan by running numerous simulations on a synthetic
network with different combinations of settings. The parameter
scan reveals the scenarios where the AIM strategy works best and
the scenarios where the strategy is detrimental to traffic perfor-
mance. Finally, we evaluate the effects of individual parameters
using further simulations on synthetic networks.

Our simulations are performed on Scalable Microscopic Adap-
tive Road Traffic Simulator (SMARTS) [22]. SMARTS is capable of
simulating different driving behaviour, adaptive traffic lights and
common traffic rules. It has been used for research in many areas
such as autonomous vehicles [27] and dynamic road configura-
tions [12].

A key observation that wemade from the study is that the overall
performance of a road network is predominantly determined by the
performance of non-freight vehicles, which cover a majority of the
traffic. Thus, when freight vehicle prioritization has positive effects
on non-freight vehicles, the network-level performance improves,
and vice versa. We also observe that connected freight vehicles can
achieve a significant performance improvement at a small cost of
other vehicles in certain scenarios.

The rest of the paper is organized as follows. Section 2 discusses
related work. Section 3 describes the key concepts and our approach
for studying freight vehicle prioritization. Section 4 details the
experimental setup and results. We conclude the paper in Section 5.

2 Related Work
We describe relevant work in three areas, autonomous intersection
management, simulation of connected autonomous vehicles and
studies on freight vehicle prioritization.

2.1 Autonomous Intersection Management
A large body of research work has been done on autonomous in-
tersection management (AIM). One direction of research focuses
on the schedule and order of vehicle arrivals at intersections [25].
For instance, some research work focuses on the least restrictive
supervisory control for vehicles at intersections [6, 7], where a traf-
fic control system intervenes when the current actions of vehicles
would lead to collisions at intersections. The control system will
adjust the schedule of vehicle arrivals for mitigating safety risks.
There is a solution that uses linear programming formulation to op-
timize the order of vehicle arrivals at intersections [1]. The solution
considers four types of conflicts between vehicles at intersections
and the kinodynamic constraints of vehicles. Carlino et al. propose
a solution that uses an auction-based method to manage intersec-
tion passing [5]. The solution allows drivers to bid on the order to
pass an intersection based on the drivers’ value of time. To achieve
a certain level of fairness and a good traffic flow, the solution also
uses a system-level mechanism to regulate the auction process.

Another research direction focuses on optimizing vehicle trajec-
tories around intersections by adjusting the motion of vehicles [15].
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For example, Au et al. develop an optimization procedure that
can adjust proportional integral derivative controllers in a real
autonomous vehicle [2] . The procedure is tailored for AIM such
that the vehicle can arrive at an intersection sooner at a higher
velocity while obeying speed limit constraints. The procedure also
utilizes a smoothing technique that enables the vehicle to decelerate
gracefully. Our recent work [11] develops a machine learning-based
solution to control the motion of autonomous vehicles such that
the vehicles can arrive at intersections at scheduled times while
maintaining a safe gap to their front vehicles. Our solution uses a
variation of Q-learning to plan the trajectories of vehicles.

Existing research on AIM generally assumes that vehicles can ad-
just their schedule and motion frequently [19]. Thus, many existing
AIM solutions are suitable for a future generation of traffic environ-
ments where the traffic mainly consists of connected autonomous
vehicles. Differently, this study focuses on a readily deployable
AIM strategy. The two main components involved in the strategy,
the connected vehicles and the adaptive traffic signals, are already
widely available in the real world [14, 24].

2.2 Simulation of Connected Autonomous
Vehicles

Traffic simulations are commonly used in studying connected au-
tonomous vehicles (CAVs). In our previouswork, we use the SMARTS
simulator to evaluate the impact of automation levels on traffic effi-
ciency and safety in three road networks of different scales [27]. In
our simulations, automation levels affect the aggressiveness in car-
following and lane-changing models. Our results show that there
is a considerable safety risk when highly automated vehicles are
mixed with human-driven vehicles. Mattas et al. evaluate the impact
of CAVs and autonomous vehicles without connectivity (AVs) by
simulating traffic on a ring road without traffic lights [18]. Similar
to our previous work, they vary the percentage of autonomous
vehicles in different simulation scenarios. Their simulations show
that AVs can have a negative impact on traffic speed but CAVs can
improve speed by cooperating with other CAVs. Hallé and Chaib-
draa study vehicle platooning by simulating autonomous vehicles
in a 3D environment [13]. Simulations are done on a straight, one
way, hight-way segment. The study compares the effectiveness of
centralized platoon coordination where a leader vehicle gives orders
to the rest of the platoon, and decentralized coordination where
each vehicle in the platoon makes decisions autonomously. Our
previous work also simulates autonomous vehicle platooning [21].
The work measures the travel time of vehicles on two corridors
that cross each other at a signalled intersection. The simulations
are done with our SMARTS simulator [22], and show that the travel
time of vehicles can be reduced significantly if some vehicles on the
same road can form platoons before reaching the intersection. Gue-
riau et al. build a simulation framework for studying cooperative
driving with connected vehicles [10]. Their simulations consider
the unreliability of sensors that can lead to wrong readings of speed
and space headway. They find that traffic perturbations caused by
unreliable sensors are reduced when the penetration rate of coop-
erative vehicles increases. Different to the aforementioned studies,
the study shown in this paper focuses on the connectivity between
freight vehicles and intelligent traffic lights.

2.3 Studies on Freight Vehicle Prioritization
Existing studies on freight vehicle prioritization mostly focus on a
limited set of traffic scenarios. Zhao and Ioannou simulate freight
vehicle prioritization on a real road network with a number of
traffic signals. Their work is based on two truck penetration rates
and two types of traffic controllers, one with truck priority and
one without truck priority [29]. All the trucks are assumed to be
connected trucks. The traffic demand in the simulation area is con-
stant in all the simulations. Different to their work, we simulate
various levels of truck connectivity and traffic demand. We also use
a number of synthetic road networks for comprehensive testing
in addition to a real network in our simulations. Zamanipour et
al. simulate prioritization of certain types of vehicles, including
trucks and transit vehicles, in an Arizona road network with six
intersections [28]. Unlike our study, their work does not show the
impact of the cycle length of traffic lights. They also conduct a field
test of their AIM strategy at one intersection, where two trucks
and two transit vehicles did some round-trips across the intersec-
tion. Kari et al. run simulations on a synthetic network with one
intersection [16]. Similar to our work, they consider the situation
where main street traffic and cross-street traffic have different traf-
fic volumes. However, their road network is relatively simple and
their experiments do not test as many parameters as our work does.
In addition, we not only test the effects of individual parameters
but also perform a parameter scan to find the best cases and the
worst cases considering all the combinations of parameter settings.
A simulation study done by Park et al. focuses on a short corridor
with six traffic lights in Virginia [20]. Their work assumes that
truck penetration rate is fixed, whereas we evaluate the effects of
different truck penetration rates. As a relevant work, we simulate
emergency vehicle prioritization where connected emergency vehi-
cles get more road space and more green lights compared to normal
vehicles [26]. Emergency vehicle prioritization is different to freight
vehicle prioritization in many aspects. For example, in our previous
work, normal vehicles in front of emergency vehicles must give
way to the emergency vehicles, whereas vehicles in front of trucks
do not have to give way to the trucks in this work. To the best of
our knowledge, there is a lack of simulation study that provides a
comprehensive view on freight vehicle prioritization using AIM.
We fill the research gap in this work.

3 Simulation Study
3.1 AIM Strategy
We study an AIM strategy that helps maximize green light time
for freight vehicles. The strategy can be applied to any intersection
with adaptive traffic signals that can dynamically change the timing
of different color phases. For simplicity, we describe the strategy
based on a normal intersection where two roads intersect.

For an adaptive traffic signal, the strategy sets amaximumcycle
length, which is the longest possible period from when a direction
gets a green light to the next time that the same direction gets a
green light. The maximum total green time is the maximum
cycle length minus the total intergreen time. An intergreen period
is the period between the end of the green period of one phase
and the beginning of the green period of the next phase, which is
normally a fixed value. For example, assuming the maximum cycle
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length is 120 seconds and one intergreen period lasts 10 seconds,
the maximum total green time is 120 − 10 × 2 = 100 seconds. The
maximum total green time can be evenly or unevenly distributed to
the crossing roads. Given two roads, 𝑟1 and 𝑟2, the maximum green
times for the roads are denoted as mg1 and mg2, respectively. We
assume that an incoming connected freight vehicle can be detected
by a traffic signal when the vehicle is within a detection distance
from the intersection. The strategy switches green light between
different roads under certain situations. Assuming the current green
light is given to road 𝑟1, the strategy will switch green light to 𝑟2
in any of the following circumstances.

• The accumulated green time of 𝑟1 reaches𝑚𝑔1.
• There is no detected freight vehicle on 𝑟1 but one or more
freight vehicles are detected on 𝑟2. In other words, the strat-
egy grants green light to freight vehicles on a conflicting
road when the current green-lighted road is clear of freight
vehicles.

• There is no traffic on 𝑟1 but there is traffic on 𝑟2.
As shown in the rules, the AIM strategy can shorten the green time
of a road for accommodating incoming trucks on a conflicting road.
That is, the actual green light time for a road may be shorter than
the maximum green time in some occasions. As a result, the actual
cycle length may be shorter than the maximum cycle length.

3.2 Key Parameters
We identify the key parameters that may affect the effectiveness of
the AIM strategy. Each parameter is detailed in this section.

Traffic Volume. This is a major factor contributing to traffic
performance in the real world. As traffic volume generally depends
on road type, our simulations with synthetic networks mainly focus
on three common road type combinations at an intersection: major-
major, major-minor and minor-minor. The default traffic volume of
both road types is extracted from real traffic statistics of Victoria,
Australia in the form of annual average daily traffic (AADT) [8].
The major road AADT is based on the records of the top 100 highest-
volume non-freeway roads, which is 25000. The minor road AADT
is based the records of other non-freeway roads, which is 5000.
Based on this, the three aforementioned road type combinations
correspond to three traffic volume combinations, {25000,25000},
{25000,5000} and {5000,5000}.

Truck Ratio. The impact of the intersection management strat-
egy may be limited if there are few freight vehicles on the road.
Based on the real statistics mentioned above, the percentage of
trucks is around 8%. We observe that trucks may only appear on
one of the crossing roads at many intersections. For example, in a
residential area split by a main road, trucks tend to travel through
the main road and they rarely travel through the narrow, minor
roads. We consider different combinations of truck ratios at an
intersection in the simulations with synthetic networks.

Truck Connectivity. This is the ratio of connected trucks over
all trucks. This parameter is important since truck connectivity
varies significantly in different scenarios in the real world.

Motion Factor. In many scenarios, the limit of acceleration and
deceleration is globally affected by weather, time of day, etc. For
example, vehicles tend to accelerate more slowly in wet weather. In
this study, the default limit of acceleration and deceleration is based
on a work on vehicle mobility models [17]. We apply a motion

factor to the limit across different simulation scenarios. The range
of the factor is 0.5 to 1.5. A motion factor of 0.5 implies that the
limit of acceleration and deceleration is halved, which may reflect
traffic characteristics in certain areas [3]. A motion factor of 1.5
may reflect traffic characteristics on the other side of the spectrum.

Look-ahead Distance. The look-ahead distance is the maxi-
mum distance from a vehicle to an object that may impede the
movement of the vehicle. Drivers normally consider traffic condi-
tions for some distance ahead. When drivers can look further ahead,
they have more time to adjust speed based on traffic lights, which
can affect traffic performance. The look-ahead distance can vary in
different situations. For example, the look-ahead distance is likely
to decrease when vehicles enter narrow, bending streets from wide,
straight roads.

Max Cycle Length. The maximum cycle length varies signifi-
cantly across different areas in the real world. A certain cycle length
may help mitigate congestion in some areas but cause problems in
other areas. Generally a short cycle is considered to be 60 seconds
while a long cycle is considered to be 120 seconds. We set intergreen
time to 10 seconds based on observation of real intersections.

Green Time Equality. In situations where freight vehicles con-
stantly come from all directions, the green light at a road is likely
to last for the maximum green time allocated to the road. The max-
imum green time for different roads at an intersection can be the
same or be different. This parameter controls the level of equality
of the maximum green time between different roads. A value of 1
achieves a perfect equality, where each road gets an equal maxi-
mum green time. If it is 0, the possible difference of the maximum
green time is the highest, where we assume that the time is dis-
tributed based on traffic volume. For example, assuming that the
volume of one road is 5 times the volume of another road at an
intersection, the maximum green time for the former road would
be 5 times the maximum green time of the later road. Given a max-
imum total green time in one cycle𝑚𝑡 , the volume of 𝑛 different
roads at an intersection {𝑣1,...,𝑣𝑛}, and the equality parameter 𝑒 ,
the maximum green time allocated to a road 𝑖 ∈ 𝑛 is computed as
𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑖 =𝑚𝑡 ×

[
𝑣𝑖∑𝑛
𝑖=1 𝑣𝑖

+ 𝑒 ×
(
1
𝑛 − 𝑣𝑖∑𝑛

𝑖=1 𝑣𝑖

)]
.

Detection Distance. The detection distance is the maximum
distance from a connected truck to an intelligent traffic signal that
detects the truck. The detection distance can be affected by natural
factors such as weather, surrounding buildings, etc. The detection
distance may also need to be artificially adjusted in some circum-
stances, e.g., ignoring connected trucks that are far away from a
traffic light.

3.3 Metrics
We evaluate traffic performance based on the following metrics.

Trip Counts. To measure accumulated traffic performance, we
count the vehicles that have completed their trips during a simula-
tion. Trips counts are collected for specific types of vehicles and
also for all the vehicles.

Average Speed. The average speed is computed for different
groups of vehicles, such as trucks on major roads, trucks on all the
roads or all the vehicles in the entire network.

Average Number of Stops.We assume that a vehicle is attempt-
ing to making a stop if its speed is below 5kph. Vehicles that goes
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through a number of intersections on a corridor achieve a better
performance if their average number of stops is lower.

3.4 Methodology
Our simulation study consists of three parts. The first part tests
the effectiveness of the AIM strategy under realistic settings on
a real road network. The second part uses a multi-dimensional
parameter scan to find the scenarios where the AIM strategy would
be most or least beneficial. The last part evaluates the impact of
individual parameters across numerous synthetic road network
configurations.
3.4.1 Estimating Performance in Real Environment
We collect the average speed of cars and trucks with different truck
connectivity levels and different traffic volumes in an area east to
Melbourne city. The experiment is detailed in Section 4.1.
3.4.2 Finding Best Cases and Worst Cases
This part uses a parameter scan to identify the patterns in the
scenarios where the AIM strategy would be most beneficial and
least beneficial. By comparing the patterns in the best-performing
cases and the worst-performing cases, we can gain insight about
the performance of freight vehicle prioritization. The study is done
in the following way. First, for each parameter described in Sec-
tion 3.2, we choose several key values within a range. For example,
we pick three values for the motion factor parameter, which are
0.5, 1 and 1.5. For each unique combination of parameter values,
we run a simulation on a synthetic road network. As the impact
of freight vehicle prioritization is maximized when all the trucks
are connected (100% connectivity) and is non-existent when all
the trucks are not connected (0% connectivity), we compute the
change of traffic performance between 100% connectivity and 0%
connectivity. If the change is positive, the strategy helps improve
traffic performance. Otherwise, the strategy does not help. We rank
the simulations based on the change of traffic performance to find
the best cases and the worst cases. More details about the parameter
scan are shown in Section 4.2.
3.4.3 Testing Individual Parameters
Different to the parameter scan, this set of experiments focuses
on the effects of individual parameters. Based on the best cases
found during the parameter scan, we choose a default setting for
each parameter. Then, for each parameter, we run simulations with
different values of the parameter while keeping other parameters at
their default values. By doing so, the change of traffic performance
is only affected by the change of a single parameter. In this part, we
use 5 synthetic road networks with different levels of complexity.
This part of experiments is detailed in Section 4.3.

4 Experiments
This section presents the setup and results of our experiments. The
section has three parts, real network simulations, parameter scan
and individual parameter study.

4.1 Simulation of Real Traffic Network
In this part, we first describe the setup of the real network simula-
tions then present our findings from the simulations.
4.1.1 Simulation Setup
We observe that the areas most affected by freight vehicles are in

large cities where freight vehicles are mixed with passenger cars.
In this experiment, we focus on one such area east to Melbourne
city. The dimensions of the area are about 12km by 12km. We
download a road network of the area from OpenStreetMap. The
road network is shown in Figure 3. The total road length in the
network is about 650km, where each direction of a two-way road
is treated separately. We identify 338 signalled intersections in the
area. We keep a constant traffic load in the area during a simulation.
Whenever a simulated vehicle reaches its destination, a new vehicle
is inserted into the network. The origin and destination of all the
vehicles are uniformly distributed in the area at random. A vehicle
follows the shortest path from its origin to its destination.

Figure 3: The Melbourne road network used in our simulations.

Due to the limitation of real traffic data, we estimate the total
number of vehicles in the area based on traffic statistics for Victoria,
Australia [8] and the road types in the area. The normal traffic load
in the area is estimated to be between 2000 and 3000. We vary the
value between 1000 and 5000 for simulating traffic in different times
of the day. For each traffic load, we run 3 simulations with different
truck connectivity levels. Each run simulates one-hour traffic.

We set other parameters to fixed values. Max cycle length is
set to 90 seconds as it is a common value used in Melbourne [23].
Green time equality is set to 1 as there is no data showing the time
distribution at each intersection. Motion factor is set to 1 as we
use the default acceleration/deceleration values from an existing
work [17]. Truck ratio is set to 0.08 based on real traffic statistics
for Victoria [8]. Look-ahead distance is set to 300m based on our
experience. Detection distance is set to 300m as we see from real
connected vehicle data that the communication range is normally
hundreds of metres.
4.1.2 Results
Our simulations show that the AIM strategy is beneficial under
all the three traffic loads (Figure 4). The speed of trucks improves
while the car speed keeps mostly steady when truck connectivity
increases from 0% to 100%. The speed improvement is 8.3%, 9.2%
and 11.4%, for 1k, 3k and 5k traffic load, respectively. Results show
that the percentage improvement is more prominent when the
road network is more congested. At 100% connectivity, truck speed
reaches car speed under all the three traffic loads.

4.2 Parameter Scan
In this part, we first describe the setup of the parameter scan then
present the results.
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Figure 4: Average speed on the real network under 3 traffic loads, 1k,
3k and 5k.

4.2.1 Simulation Setup
We use a 5x5 synthetic road network for all the simulations in the
parameter scan. The network consists of 5 western/eastern roads
that cross 5 northern/southern roads. As our focus is on intersecting
traffic, we create vehicles that do not make turns so that any vehicle
needs to pass 5 intersections during its trip. All the roads in this
network are two-way roads. There is a traffic signal at each of the
25 intersections. The total intergreen time in a light cycle is 20
seconds. Each road segment is 1km in length. The total length of
a road is 6km in each direction. The speed limit of the roads is
set to 70km/h, which is a common value for roads in Melbourne,
Australia.

The parameter values used in the scan are detailed in Table 1. As
mentioned in Section 3.2, we mainly consider three traffic volume
combinations at intersections. Given a traffic volume combination
{𝑣𝑥 , 𝑣𝑦 }, each western/eastern road will have a traffic volume 𝑣𝑥 and
each northern/southern road will have a traffic volume 𝑣𝑦 . As the
values in the combinations are in the form of AADT, we convert
the AADT values to the rates that vehicles are injected from the
starting point of roads. Similar to traffic volume, the parameter scan
considers three combinations of truck ratios at intersections. Given
a combination {𝑟𝑥 , 𝑟𝑦 }, the ratio of trucks on each western/eastern
road will be 𝑟𝑥 and the ratio of trucks on each northern/southern
road will be 𝑟𝑦 . Based on Table 1, there are 1944 combinations of
parameter values. For each combination, we run three simulations
with the same settings. Each of them simulates 30-minute traffic
on the synthetic road network. The results are averaged from the
three runs.

Table 1: Settings for parameter scan.
Parameter Values

Truck Connectivity 0%, 50%, 100%
Motion Factor 0.5, 1, 1.5

Look-ahead Distance 100m, 300m
Green Time Equality 0, 1
Max Cycle Length 60s, 90s, 120s
Traffic Volume {25000,25000}, {25000,5000}, {5000,5000}
Truck Ratio {0.08,0.08}, {0.08,0}, {0,0.08}

Detection Distance 100m, 300m

We are particularly interested in the change of accumulated
performance when truck connectivity increases from 0% to 100%.
Wemeasure accumulated performance using the percentage change
of trip count in this parameter scan. A positive percentage change
indicates that the AIM strategy is beneficial at the network level.

4.2.2 Results
Table 2 and Table 3 show the best scenarios and the worst scenarios
in terms of the percentage change of total trip count (denoted as
Total # Change). Each record in the tables also shows percentage
changes of truck trip count and car trip count, denoted as Truck
# Change and Car # Change, respectively. Key parameter settings
of the scenarios are also included in the tables. For example, the
top record in Table 2 shows that the throughput of the whole net-
work improves by 4.22% when the AIM strategy is applied to the
maximum level, i.e., when all the trucks are connected. We can
see that the performance change of trucks and cars are 10.5% and
3.8%, respectively. Table 4 and Table 5 show the best and the worst
scenarios in terms of the percentage changes of truck trip counts.

Based on the results, we observe that the change of total trip
count is generally tied to the change of car trip count. For example,
in Table 3, both types of changes are around -30% while trucks
record positive changes. This pattern is due to the fact that the
majority of the traffic consists of cars. Therefore, the AIM strategy
is not suitable where it has a large negative impact on cars.

The AIM strategy works in the most balanced way when it helps
improve the performance for all vehicles, which are the cases shown
in Table 2. In these cases, trucks obtain 5.2%-11.5% improvements
while cars get 2.2%-3.8% improvements. The overall traffic perfor-
mance gets 2.7%-4.2% improvements. These best cases have some
common characteristics. First, they are all achieved where major
roads intersect minor roads. Second, they all use evenly distributed
maximum green time in one light cycle. Third, all the major roads
have trucks. Based on these characteristics, we believe the reason
behind the improvements of accumulated traffic performance is
that the AIM strategy increases the ratio of major roads’ green time
over minor roads’ green time. As most of the vehicles in the whole
network travel on the major roads, this helps improve the overall
traffic performance.

All the worst cases of overall performance change share a differ-
ent set of characteristics (Table 3). First, all of them are achieved
where major roads intersect major roads. Second, trucks come from
only one of the major roads at an intersection. Third, vehicles move
with a low acceleration rate and a low deceleration rate. The poor
performance is due to the fact that prioritizing traffic for only one
major road causes significant congestion on the other major road.
In addition, when vehicles accelerate and decelerate more slowly,
clearing vehicle queue at congested intersections would take a
longer time, lowering the overall traffic performance further.

We observe that it is possible to improve truck performance
significantly while slightly decreasing the performance of other
vehicles. As shown in Table 4, we can achieve 16.4%-31.4% truck
improvements while decreasing the car performance by 1.1%-4.8%.
All the cases are achieved where trucks only travel on minor roads
that cross major roads. And, nearly all the cases use unequal green
time distribution that leads to short green time for minor roads.
When the trucks are not connected, they tend to wait for a long time
at traffic lights because the minor roads tend to only get a small
portion of the total green light time. On the contrary, when the
trucks are connected, the AIM strategy would frequently lengthen
green light time for minor roads, thus allowing more trucks to cross
the intersections without delay.
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Table 2: Settings for 10 best percentage changes of total trip count when truck connectivity increases from 0% to 100%.
Rank Total # Truck # Car # Motion Look-ahead Green Time Max Cycle Traffic Truck Detection

Change Change Change Factor Distance Equality Length Volume Ratio Distance
1 4.22% 10.5% 3.8% 0.5 300m 1 90s {25k,5k} {0.08,0} 300m
2 3.76% 6.5% 3.6% 0.5 300m 1 90s {25k,5k} {0.08,0.08} 300m
3 3.73% 5.5% 3.6% 1 300m 1 90s {25k,5k} {0.08,0.08} 300m
4 3.58% 6.33% 3.36% 1.5 300m 1 90s {25k,5k} {0.08,0.08} 300m
5 3.33% 7.98% 3.03% 1 300m 1 120s {25k,5k} {0.08,0} 300m
6 3.18% 8.33% 2.84% 1 300m 1 90s {25k,5k} {0.08,0} 300m
7 2.93% 11.31% 2.42% 0.5 300m 1 120s {25k,5k} {0.08,0} 300m
8 2.89% 6.09% 2.68% 1 300m 1 90s {25k,5k} {0.08,0} 100m
9 2.83% 5.16% 2.64% 1 300m 1 90s {25k,5k} {0.08,0.08} 100m
10 2.71% 11.52% 2.2% 0.5 300m 1 60s {25k,5k} {0.08,0} 300m

Table 3: Settings for 10 worst percentage changes of total trip count when truck connectivity increases from 0% to 100%.
Rank Total # Truck # Car # Motion Look-ahead Green Time Max Cycle Traffic Truck Detection

Change Change Change Factor Distance Equality Length Volume Ratio Distance
10 -29.95% 13.5% -31.4% 0.5 300m 1 60s {25k,25k} {0,0.08} 300m
9 -30.17% 12.42% -31.6% 0.5 300m 0 60s {25k,25k} {0,0.08} 300m
8 -30.36% 12.53% -31.89% 0.5 300m 0 90s {25k,25k} {0.08,0} 300m
7 -30.59% 11.93% -32.09% 0.5 300m 1 90s {25k,25k} {0,0.08} 300m
6 -30.87% 7.33% -32.25% 0.5 300m 0 120s {25k,25k} {0,0.08} 300m
5 -31.07% 6.98% -32.45% 0.5 300m 1 120s {25k,25k} {0,0.08} 300m
4 -31.31% 11.1% -32.81% 0.5 300m 0 90s {25k,25k} {0,0.08} 300m
3 -31.56% 11.93% -33.1% 0.5 300m 1 90s {25k,25k} {0.08,0} 300m
2 -31.69% 9.06% -33.16% 0.5 300m 1 120s {25k,25k} {0.08,0} 300m
1 -31.93% 7.82% -33.37% 0.5 300m 0 120s {25k,25k} {0.08,0} 300m

Table 4: Settings for 10 best percentage changes of truck trip count when truck connectivity increases from 0% to 100%.
Rank Truck # Total # Car # Motion Look-ahead Green Time Max Cycle Traffic Truck Detection

Change Change Change Factor Distance Equality Length Volume Ratio Distance
1 31.39% -4.51% -4.83% 0.5 300m 0 120s {25k,5k} {0,0.08} 300m
2 29.96% -3.09% -3.4% 0.5 300m 0 90s {25k,5k} {0,0.08} 300m
3 24.04% -4.39% -4.64% 0.5 300m 0 120s {25k,5k} {0,0.08} 100m
4 23.33% -3.55% -3.81% 0.5 100m 0 120s {25k,5k} {0,0.08} 300m
5 20.85% -2.21% -2.45% 0.5 100m 0 90s {25k,5k} {0,0.08} 300m
6 18.43% -1.43% -1.64% 1 300m 0 90s {25k,5k} {0,0.08} 300m
7 16.92% -1.47% -1.66% 1 300m 0 60s {25k,5k} {0,0.08} 300m
8 16.89% -1.47% -1.66% 1 100m 0 120s {25k,5k} {0,0.08} 100m
9 16.89% -0.9% -1.08% 1 300m 0 90s {25k,5k} {0,0.08} 100m
10 16.36% -2.51% -2.71% 0.5 100m 1 120s {25k,5k} {0,0.08} 300m

Table 5: Settings for 10 worst percentage changes of truck trip count when truck connectivity increases from 0% to 100%.
Rank Truck # Total # Car # Motion Look-ahead Green Time Max Cycle Traffic Truck Detection

Change Change Change Factor Distance Equality Length Volume Ratio Distance
10 -5.01% -5.48% -5.51% 1 300m 1 60s {25k,25k} {0.08,0.08} 100m
9 -5.17% -4.77% -4.73% 1.5 300m 1 60s {25k,25k} {0.08,0.08} 100m
8 -5.17% -4.71% -4.68% 1.5 300m 0 60s {25k,25k} {0.08,0.08} 100m
7 -5.55% -4.86% -4.81% 1.5 100m 0 60s {25k,25k} {0.08,0.08} 100m
6 -5.77% -4.83% -4.75% 1 100m 0 120s {25k,25k} {0.08,0.08} 100m
5 -6.09% -6.8% -6.85% 0.5 300m 0 120s {25k,25k} {0.08,0.08} 300m
4 -6.23% -5.64% -5.6% 1.5 100m 1 60s {25k,25k} {0.08,0.08} 100m
3 -6.26% -6.6% -6.62% 0.5 300m 1 120s {25k,25k} {0.08,0.08} 300m
2 -6.34% -8.54% -8.71% 0.5 300m 0 120s {25k,25k} {0.08,0.08} 100m
1 -6.93% -7.87% -7.94% 0.5 300m 1 120s {25k,25k} {0.08,0.08} 100m

Regarding the worst cases of truck performance change (Table 5),
we see that all of them are achieved in major-major scenarios where
trucks move on all the roads. Without AIM, the flow of trucks would
be similar on different roads. The use of AIM would interrupt the
flow of trucks in these cases, leading to a lower truck performance.

We observe that varying the value of even a small portion of
the parameters can lead to significant changes in the results. For
example, Figure 5 shows the impact of varying three parameters,
motion factor, cycle length and look-ahead distance. For better illus-
tration of the trends in the results, the truck connectivity changes
in increments of 20%. The values of other four parameters are the
same for the results in both sub-figures (i.e., green time equality is 1,

traffic volume is {25000,5000}, truck ratio is {0.08,0.08} and detection
distance is 300m). In Figure 5a, trucks and cars on minor roads
move faster with higher truck connectivity levels. At the same
time, traffic speed on major roads is mostly steady. Differently, in
Figure 5b, traffic on major roads moves faster while cars on minor
roads slow down when connectivity changes from 0% to 100%. To
get a better understanding of the impact of different parameters,
we conduct further simulations as shown in Section 4.3.

4.3 Individual Parameter Study
In this part, we first describe the setup of the individual parameter
study then show our findings from the tests.
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(a) Case 1: 1.5 motion factor, 120s cycle length and
100m look-ahead distance

(b) Case 2: 0.5 motion factor, 60s cycle length and
300m look-ahead distance

Figure 5: Different settings of motion factor, cycle length and look-
ahead distance result in different traffic patterns.

4.3.1 Simulation Setup
This part of the experiments uses five synthetic road networks. One
of them is the 5x5 synthetic network used in the parameter scan.
There are four more synthetic networks with reduced complexity.
Same as the 5x5 network, each of the four networks consists of two
sets of perpendicular roads. The layouts of the additional networks
are 1x1, 1x3, 1x5 and 3x3. For example, the 1x3 network has one
western/eastern road that crosses 3 northern/southern roads.

For each road network, we simulate three different scenarios.
In Scenario 1, western/eastern roads are major roads and north-
ern/southern roads are minor roads. Only the major roads have
trucks, i.e., truck ratio parameter does not affect minor roads. Sce-
nario 2 is similar to the first one except that minor roads also have
trucks. In Scenario 3, all the roads are major roads with trucks.

Parameter values tested in this part are shown in Table 6. The
default parameter values are based on the best cases of overall
traffic performance improvements in the earlier parameter scan
(Table 2). When testing the impact of a specific parameter, we
vary the parameter’s value while keeping other parameters at their
default values. For each combination of parameter values, we run
5 simulations and average the results. Each simulation lasts 30
minutes. We should note that the traffic volume setting only affects
major roads as the volume for minor roads is fixed to 5000.
4.3.2 Results

Truck Connectivity. We observe significant differences of traf-
fic performance between the three scenarios on all the road net-
works. As an example, we show the results on the 3x3 network
in Figure 6. In Scenario 1 (Figure 6a), when connectivity changes
from 0% to 100%, cars and trucks on major roads move faster by
10.6% and 16.4%, respectively. At the same time, cars on minor roads
are slowed down by 19.2%. As minor roads have no trucks in this
scenario, they tend to lose green light time to major roads that have
connected trucks. In Scenario 2 (Figure 6b), the minor roads gain

Table 6: Settings for individual parameter study.
Parameter Default Range

Truck Connectivity 100% 0%-100%
Motion Factor 1 0.2-1.8

Look-ahead Distance 300m 100m-300m
Green Time Equality 1 0-1
Max Cycle Length 90s 30s-150s

Traffic Volume (Major) 25k 5k-45k
Truck Ratio 0.08 0-0.16

Detection Distance 300m 10m-300m

(a) Scenario 1

(b) Scenario 2

(c) Scenario 3
Figure 6: Average speed at different connectivity levels on 3x3 net-
work.

back some green light time as they have trucks. As a result, the
loss of car speed on the minor roads reduces to 13.1%. The trucks
on minor roads slow down when only 20% of them are connected.
Their speed starts to recover when more of them are connected. In
Scenario 3 (Figure 6c), we see that the AIM strategy does not help as
the average speed of all vehicles is at the highest at 0% connectivity.
In the first two scenarios, we see that the initial speeds on minor
roads are higher than that on major roads at 0% connectivity, which
indicates that traffic on lower-volume roads move faster in normal
situations. But the speeds on minor roads start to deteriorate when
some trucks on the major roads are connected.

Motion Factor. A higher motion factor leads to a better traffic
performance in all the scenarios on all the road maps. Figure 7
shows an example taken from Scenario 2 in the 5x5 network. We
see a large improvement of speed for all the vehicles when motion
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factor increases from 0.2 to 0.6 (Figure 7a). The speed increases
further after 0.6 motion factor but at a lower rate. Corresponding to
the speed improvement, we see a 49.2% increase of total trip count
when motion factor changes from 0.2 to 0.6 (Figure 7b).

(a) Average speed (b) Total trip count
Figure 7: The effects of motion factor in Scenario 2 on the 5x5 net-
work.

Look-ahead Distance. The impact of look-ahead distance is
negligible except for trucks on minor roads in Scenario 2. For ex-
ample, when look-ahead distance increases from 100m to 300m, the
average speed of trucks on minor roads increases by 4.1%, 6.6% and
4.7% in 1x1 network, 1x3 network and 1x5 network, respectively.
When truck drivers can look further ahead, the movement of trucks
in low-volume roads can be more smooth, resulting in a higher
speed. For example, when truck drivers see a red light far ahead,
they can gradually slow down the trucks rather than making a sud-
den stop. As the trucks move closer to the intersection, the traffic
light may turn green, at which point the trucks can pick up speed
and then cross the intersection without stopping.

Green Time Equality. The effect of this parameter is observable
where major roads cross minor roads. For example, Figure 8 shows
the change of average speed when this parameter increases from 0
to 1 on the 5x5 network. The results are from Scenario 2wheremajor
roads cross minor roads. In this scenario, truck speed increases by
11.7% and car speed increases by 14.4% on minor roads. At the same
time, vehicle speeds on major roads have a slight drop. When green
time equality is higher, the minor roads tend to get more green
time, resulting in the increased traffic performance on minor roads.
Meanwhile, the major roads tend to experience more congestion as
there is less time to clear up vehicle queues during a light cycle.

Figure 8: The effects of green time equality in Scenario 2 on the 5x5
network.

MaxCycle Length. The results show that a very short max cycle
length has a negative impact on major road traffic. For example,
Figure 9 shows the average number of stops with different cycle
lengths where major roads cross each other. We can see that the
number of stops for all the four vehicle-road combinations drops by
around 70% when the max cycle length increases from 30s to 60s.
The number of stops does not vary significantly when the cycle

length increases further. Due to the high traffic volume on major
roads, a very short cycle length can lead to the accumulation of
vehicles in a short period, leading to a poor traffic performance.

Figure 9: The effects of max cycle length in Scenario 3 on the 1x1
network.

Traffic Volume (Major).When traffic volume on major road
increases, there is a drop of average speed for all vehicles in all
the scenarios. Figure 10a shows an example taken from Scenario 2
on the 5x5 network. When the volume on major road is the same
as the volume on minor road, i.e., 5k, all the vehicles achieve the
similar average speed due to negligible traffic congestion at the low
volume. As the major road volume grows, we start to see a drop of
average speed for both cars and trucks. The rate of drop is smaller
for cars as they can accelerate faster than trucks. In Figure 10b, we
can see that the average speed of all vehicles decreases gradually
when major road volume increases from 5k to 35k. There is a larger
speed drop when the volume increases from 35k to 45k. When
traffic volume is very high, it would be difficult to clear up vehicle
queues at intersections during one light cycle. This can lead to the
expansion of vehicle queues as time goes by, lowering the traffic
performance further.

(a) Truck speed and car speed (b) Speed of all vehicles
Figure 10: The effects of major road volume in Scenario 2 on all the
roads in the 5x5 network.

Truck Ratio. Our results show that a higher truck ratio can lead
to a higher speed where the traffic volume of a prioritized road is
significantly higher than the other road at an intersection. Figure 11
shows the average speed of all vehicles in three scenarios on the
3x3 network. When truck ratio increases from 0% to 16%, we record
different levels of speed change in the three scenarios. The best
case is achieved in Scenario 1, where freight vehicle prioritization
is only applied to major roads effectively as minor roads do not
have trucks. There is a speed improvement of 8.8% as major roads
get more green time, resulting in faster movements of a majority
of traffic in the whole system. In Scenario 2, the average speed
of all vehicles varies in a small range. At 16% truck ratio, there is
only a 2.2% speed improvement over 0% truck ratio. The reduced
improvement is due to the fact green light is switched more fre-
quently between conflicting roads when all the roads have trucks.
As the intergreen time for making one switch is fixed, more fre-
quent switching effectively reduces the total green time in a unit
of time, resulting in longer vehicle queues at intersections. Similar
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to our earlier results, we observe that the AIM strategy may not
work where high-volume roads intersect. As shown in Scenario 3,
the speed change is -10% when truck ratio increases from 0% to
16%. The drop of speed is due to the combinational effects of the
increased green-light switching and the higher number of vehicles.

Figure 11: The effects of truck ratio on the 3x3 network.

Detection Distance. Our results show that vehicle speed on the
roads that have connected trucks improves when detection distance
increases from 10m to 50m. For example, in Scenario 3 on the 5x5
network, cars achieve a speed gain of 5.9% and trucks achieve a
speed gain of 14.4% when detection distance increases from 10m to
50m (Figure 12).

Figure 12: The effects of detection distance in Scenario 3 on the 5x5
network.

5 Conclusions
In this study we evaluated the impact of AIM-based freight vehicle
prioritization on the overall traffic. Our simulations showed that
AIM can help improve freight vehicle performance with a minimal
impact on other vehicles in realistic traffic environments. We have
found patterns in the best and worst cases over a wide range of traf-
fic scenarios where the AIM strategy is applied. We also observed
that traffic performance can be affected by individual parameters
of a traffic system. We hope our results can help traffic engineers in
developing effective freight vehicle prioritization solutions. When
sufficient real AIM data becomes available in the future, we plan to
calibrate simulations further.
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