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ABSTRACT
Effective physical database design tuning requires selection of sev-

eral physical design structures (PDS), such as indices and materi-

alised views, whose combination influences overall system perfor-

mance in a non-linear manner. While the simplicity of combining

the results of iterative searches for individual PDSs may be appeal-

ing, such a greedy approach may yield vastly suboptimal results

compared to an integrated search. We propose a new self-driving

approach (HMAB) based on hierarchical multi-armed bandit learn-

ers, which can work in an integrated space of multiple PDS while

avoiding the full cost of combinatorial search. HMAB eschews

the optimiser cost misestimates by direct performance observa-

tions through a strategic exploration, while carefully leveraging

its knowledge to prune the less useful exploration paths. As an

added advantage, HMAB comes with a provable guarantee on its

expected performance. To the best of our knowledge, this is the

first learned system to tune both indices and materialised views in

an integrated manner. We find that our solution enjoys superior

empirical performance relative to state-of-the-art commercial phys-

ical database design tools that search over the integrated space of

materialised views and indices. Specifically, HMAB achieves up to

96% performance gain over a state-of-the-art commercial physical

database design tool when running industrial benchmarks.

PVLDB Reference Format:
R. Malinga Perera, Bastian Oetomo, Benjamin I. P. Rubinstein, and Renata

Borovica-Gajic. HMAB: Self-Driving Hierarchy of Bandits for Integrated

Physical Database Design Tuning. PVLDB, 16(2): 216 - 229, 2022.

doi:10.14778/3565816.3565824

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://go.unimelb.edu.au/k53i.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 2 ISSN 2150-8097.

doi:10.14778/3565816.3565824

1 INTRODUCTION
Physical design tuning has enjoyed significant research attention

in databases over a period of decades. New challenges such as dy-

namic and multi-tenant environments, and complex workloads,

have challenged the status quo, necessitating new research in this

established area. Despite the significant attention, most existing

efforts focus separately on the tasks of index selection [36] or ma-

terialised view selection [47]. Only a handful of off-line solutions

have shown capability to work in the complex combined space of

multiple physical design structures [1, 3, 78].

While indices work on a single table, materialised views (sim-

ply referred to as ‘views’ hereafter) provide the option to create

indexing structures on multiple tables and use high-level constructs

such as group-bys and order-bys. This rich structure of views gives

rise to a massive action space for even the simplest workloads. Rec-

ommending views and indices together for a given workload is an

arduous task for a human or an automated tool. Therefore, some

tools limit themselves to a single PDS [5, 36, 67]. While it might

look straightforward to iteratively select each PDS in isolation to

develop a configuration made of multiple PDS, it has been shown

that interactions between PDS can lead to sub-optimal recommen-

dations under the iterative approach [1].

Nevertheless, an exhaustive search of a combined search space

can quickly explode in combinations. As a solution, [1] uses filtra-

tion techniques (candidate selection) to reduce the search space,

whereas [78] follows a hybrid approach to only use integrated

search when the interaction between two PDS is strong. These

solutions depend on the optimiser cost model, usually exposed via

a “what-if" interface [13]. Yet, it has been shown that the estimates

from the optimiser cost models can significantly differ from actual

performance [21], resulting in severe performance regressions [8].

Contextual combinatorial multi-armed bandits (MABs) have

been successfully used to avoid shortcomings of optimiser-based

recommendation tools [59]. Unlike systems that rely on a misspeci-

fied optimiser cost model, bandits learn from the actual performance

observations, eschewing the optimiser (mis)estimates, which allows

them to adapt to dynamic environments and ad-hoc workloads. The

MAB framework facilitates the search strategy by efficiently bal-

ancing exploring new actions and exploiting so-far best actions to

maximise cumulative rewards under uncertainty. However, such an
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architecture can easily get too complex (in context, reward, and ora-

cle design) when considering multiple physical design structures at

once. Furthermore, larger contexts directly impact the running time

of the solution. In search of truly extensible design, we introduce

a hierarchy of contextual and combinatorial MABs for physical

design tuning. Our proposed solution consists of two layers. The

first layer is responsible for candidate PDS selection, and the sec-

ond layer considers all the candidate structures together to select

the final configuration. Unlike past efforts [1], MABs can handle

a vast action space allowing the first layer of bandits to be more

flexible in candidate selection and pass on any promising design

structure to the second level, rather than limiting ourselves to the

per-query optimal structures only. Furthermore, MAB’s simpler re-

inforcement learning formulation comes with a provable guarantee

on the average performance, which is hardly the case for general

forms of deep reinforcement learning [67].

Despite many advantages of not relying on the optimiser cost

model, actual cost observations require PDS materialisations. While

this has been shown to work well with the limited action space of

indices [59], when it comes to the massive action space of views or

the combined action space of multiple PDS, the cost of exploration

becomes unaffordable. Our framework thus employs a hybrid ap-

proach that learns the benefit of PDSs through the actual query

execution, while minimally using the optimiser knowledge to re-

duce the exploration space. Specifically, the optimiser cost model

is leveraged to prune out exploration paths that the optimiser will

not consider for query execution.

The key contributions of the paper are:

• We present the first online learned approach to tune multi-

ple PDS in an integrated search space. This novel solution

combines the best of both integrated and iterative search

approaches for PDS tuning.

• We introduce a new bandit flavour that extends the existing

contextual and combinatorial bandit to build a hierarchy of

bandits that can handle a large action space and make use

of parallel processing capabilities.

• We provide a search method that combines the optimiser

knowledge and actual execution statistics to make better

recommendations and cut down on PDS creation time (up

to 58% reduction in creation time compared to methods

that rely solely on execution statistics).

• Our extensive experiments showcase the HMAB’s ability to

surpass a state-of-the-art commercial physical design tool

by providing up to 96% speed-up under dynamic workloads

tuning integrated search space of views and indices.

• Wedemonstrate HMAB’s superiority over nine index-tuning

solutions including state-of-the-art DBABandit [59], Ex-

tend [64], DTAAnytime [14], Relaxation [9], AutoAdmin [15],

DB2Advisor [70] and reinforcement learning basedUDO [74]

against gold standard industrial benchmarks.

2 PROBLEM FORMULATION
A formal definition of online physical database design tuning prob-
lem follows [59]. The PDS recommendation tool’s goal is to propose

a configuration sequence 𝑆 = (𝑠0, 𝑠1, . . . , 𝑠𝑇 ) for the workload se-

quence𝑊 = (𝑤1,𝑤2, . . . ,𝑤𝑇 ), which minimises the total workload

time 𝐶𝑡𝑜𝑡 (𝑊,𝑆), when the workload sequence or system run times

are not known in advance. Configuration 𝑠𝑡 refers to a set of PDS

and 𝐶𝑡𝑜𝑡 (𝑊,𝑆) is defined as:

𝐶𝑡𝑜𝑡 (𝑊,𝑆) =
𝑇∑︂
𝑡=1

𝐶𝑟𝑒𝑐 (𝑡) +𝐶𝑐𝑟𝑒 (𝑠𝑡−1, 𝑠𝑡 ) +𝐶𝑒𝑥𝑐 (𝑤𝑡 , 𝑠𝑡 ) .

Here𝐶𝑟𝑒𝑐 (𝑡) refers to the recommendation time in round 𝑡 (running

time of the recommendation tool) and 𝐶𝑐𝑟𝑒 (𝑠𝑡−1, 𝑠𝑡 ) refers to the

incremental PDS creation time in transitioning from configuration

𝑠𝑡−1 to 𝑠𝑡 . Finally, 𝐶𝑒𝑥𝑐 (𝑤𝑡 , 𝑠𝑡 ) denotes the execution time of mini-

workload𝑤𝑡 under the configuration 𝑠𝑡 (sum of response times of

individual queries). Each 𝑠𝑡 should fit in the memory budget M and

can include any PDS type that is considered by the PDS tuning tool.

At each round 𝑡 , the system chooses a configuration 𝑠𝑡 in prepa-

ration for the mini-workload 𝑤𝑡 . The system does not have any

idea about𝑤𝑡 and therefore, the selection of 𝑠𝑡 completely depends

on the historical observations (𝑤1, . . . ,𝑤𝑡−1) and respective actions
(𝑠1, . . . , 𝑠𝑡−1). The recommendation system performs minimum re-

quired actions to change the configuration from 𝑠𝑡−1 to 𝑠𝑡 . That

means addition of a new set of PDSs in the set difference 𝑠𝑡\𝑠𝑡−1 and
dropping PDSs in the set difference 𝑠𝑡−1\𝑠𝑡 . Thereafter, new work-

load𝑤𝑡 will be executed and the query plans including execution

statistics will be collected.

3 BANDIT BACKGROUND
In this work, we propose using contextual combinatorial bandits for

online PDS tuning. This section presents relevant MAB background

that will be useful when understanding this paper. We discuss

important properties of contextual combinatorial bandits, such

as context and combinatorial arms, which allows the bandit to

converge to performant configurations quickly.

Notation: We use boldface for non-scalar values, vectors use

lowercase letters, matrices use uppercase and transpose of a vector

or matrix is denoted with a prime.

3.1 A Simple Bandit Setting
The basic stochastic bandit setting [12] repeatedly selects from 𝑘

potential actions, over rounds 𝑡 = 1, 2, . . ., in each of which the

MAB:

(1) Selects or pulls one action or arm 𝑖𝑡 ∈ [𝑘]; where [𝑘] =
{1, 2, . . . , 𝑘} for 𝑘 ∈ N and

(2) Observes a random reward 𝑅𝑡 (𝑖𝑡 ) independently drawn

from fixed but unknown reward distribution.

A MAB’s goal is to maximise cumulative expected rewards. The

MAB only observes rewards on pulled arms. Thus, the MAB must

balance exploration of under-observed arms to increase prospects

of long-term rewards, with exploitation of knowledge gained so

far for immediate rewards. To account for the cost of exploration,

performance is measured relative to a best fixed policy:

Definition 1. Cumulative regret to time 𝑇 , is defined as the dif-
ference between total expected rewards under the best fixed-arm policy
and the MAB’s cumulative expected reward, 𝜇★𝑇 −∑︁𝑇

𝑡=1 E[𝑅𝑡 (𝑖𝑡 )],
where 𝜇★ = max𝑖∈[𝑘 ] E[𝑅(𝑖)].



3.2 Contextual Combinatorial Bandit Setting
Practically, a viable bandit formulation of online physical database

design tuning problem requires some additional features, which are

only offered in the contextual combinatorial bandit variant. This

advanced variant makes some noticeable changes to the classic

setting:

(1) MAB gets additional side information (context) with each

action or arm 𝑖 ∈ [𝑘], denoted as 𝑿𝑡 = {𝒙𝑡 (𝑖)}𝑖∈[𝑘 ] , for
𝒙𝑡 (𝑖) ∈ R𝑑 , along with their costs, 𝑐𝑖 ;

(2) MAB can pull a set of arms (as opposed to a single arm),

which is termed as the super arm 𝑠𝑡 ∈ S𝑡 , where we restrict
the class of possible super arms using the total cost𝐶 . S𝑡 =
{𝑠 ⊆ [𝑘] |∑︁𝑖∈𝑠 𝑐𝑖 ≤ 𝐶 } ⊆ 2

[𝑘 ]
; and

(3) Rather than receiving a single reward for the super arm,

for each arm 𝑖𝑡 in the super arm, MAB observes a score
𝑟𝑡 (𝑖𝑡 ) (known as a semi-bandit feedback). 𝑟𝑡 (𝑖𝑡 ) is drawn
from fixed but unknown reward distribution that solely

depends on the arm 𝑖𝑡 and its context 𝒙𝑡 (𝑖𝑡 ) (as opposed to

depending only on the arm).

Note that still the bandit can only observe scores for arms in-

cluded in the super arm, requiring delicate balance between explo-

ration and exploitation.

3.3 An Implementation
MAB needs to maximise the cumulative expected reward∑︁
𝑡 E[𝑅𝑡 (𝑠𝑡 )] =

∑︁
𝑡 𝑔(𝒓★𝑡 ,𝑿𝑡 , 𝑠𝑡 ) for a known function 𝑔, which is

based on each arm’s true expected scores, 𝒓★𝑡 . It might seem like the

only way to estimate arms scores is by including them in the super

arm. This is practically impossible with a large number of arms. A

solution for this is provided in the Contextual Combinatorial Upper

Confidence Bound (C
2
UCB) algorithm [61], an implementation of

a contextual combinatorial bandit (see Algorithm 1).

Sweep away the need to explore each arm:Context in C2
UCB

bandit allows the learner to generalise the learned knowledge to

unseen arms by modelling arm rewards as linearly dependent on

their context. C
2
UCB estimates E[𝑟𝑡 (𝑖) |x𝑡 (𝑖)] with 𝜽 ′𝒙𝑡 (𝑖) + 𝜀𝑡 (𝑖)

for unknown zero-mean (subgaussian) random variable 𝜀𝑡 where

𝜽 ∈ R𝑑 are trained coefficients of a ridge regression on arm 𝑖’s

observed rewards against contexts. It is important to notice that, all

learned knowledge is encapsulated in 𝜽 , which is shared between

all arms. Simply knowing the arm context x𝑡 (𝑖) would allow us

to compute the estimate of its score removing the need to explore

each arm. The estimation accuracy of an arm’s score will depend

on exploration of the arm’s context dimensions. Therefore, bandit

exploration should now target unexplored regions of the context

rather than unexplored arms. The number of dimensions in the

context is orders of magnitude smaller than the number of arms.

Optimism in the face of uncertainty: C2
UCB uses an explo-

ration boost to the arms where it is less certain about the score

(i.e., arms with unexplored context dimensions). As the name sug-

gests, C
2
UCB uses the upper confidence bound (UCB) [45] as shown

below, to balance the exploration and exploitation.

𝑟𝑡 (𝑖) = 𝜽ˆ
′
𝑡𝒙𝑡 (𝑖) + 𝛼𝑡

√︂
𝒙𝑡 (𝑖)′𝑽−1𝑡−1𝒙𝑡 (𝑖) , (1)

Algorithm 1 The C
2
UCB Algorithm

1: Input: 𝜆, 𝛼1, . . . , 𝛼𝑇
2: Initialize 𝑽0 ← 𝜆𝑰𝑑 , 𝒃0 ← 0𝑑
3: for 𝑡 ← 1, . . . ,𝑇 do
4: Observe S𝑡
5: 𝜽ˆ 𝑡 ← 𝑽−1

𝑡−1𝒃𝑡−1 ⊲ estimate via ridge regression

6: for 𝑖 ∈ [𝑘] do
7: Observe context 𝒙𝑡 (𝑖)
8: 𝑟𝑡 (𝑖) ← 𝜽ˆ

′
𝑡𝒙𝑡 (𝑖) + 𝛼𝑡

√︂
𝒙𝑡 (𝑖)′𝑽−1𝑡−1𝒙𝑡 (𝑖)

9: end for
10: 𝑠𝑡 ← A(𝒓𝑡 ,𝑿𝑡 ) ⊲ using 𝛼-approximation oracle

11: Play 𝑠𝑡 and observe 𝑟𝑡 (𝑖) for all 𝑖 ∈ 𝑠𝑡
12: 𝑽𝑡 ← 𝑽𝑡−1 +

∑︁
𝑖∈𝑠𝑡 𝒙𝑡 (𝑖)𝒙𝑡 (𝑖)

′ ⊲ regression update

13: 𝒃𝑡 ← 𝒃𝑡−1 +
∑︁
𝑖∈𝑠𝑡 𝑟𝑡 (𝑖)𝒙𝑡 (𝑖) ⊲ regression update

14: end for

First term (i.e., 𝜽ˆ
′
𝑡𝒙𝑡 (𝑖)) of this equation is the point estimate

of the arm score, whereas the second term (i.e., 𝛼𝑡
√
. . .) denotes

the exploration boost. Here 𝛼𝑡 > 0 is the exploration boost factor,

and 𝑽𝑡−1 is the positive-definite 𝑑 × 𝑑 scatter matrix of contexts

for the chosen arms up to and including round 𝑡 − 1. The value of
the second term is larger when the context includes unexplored

context dimensions and will be explored by the bandit.

The approximate oracle: Once we have the estimated score

for each arm, the next task is to pick a set of arms (i.e., super arm

𝑠𝑡 ∈ S𝑡 ) which maximise 𝑔(𝒓𝑡 ,𝑿𝑡 , 𝑠𝑡 ) keeping within the memory

budget. This resembles the well known 0-1 knapsack problem. We

settle for a near-optimal solution with an approximate algorithm

(known as an 𝛼-approximation oracle), since the optimal solution

for index and view selection is considered NP-hard [17, 28].

Definition 2. [59] An 𝛼-approximation oracle is an algorithm
A that outputs a super arm 𝑠 = A(𝒓,𝑿 ) with guarantees𝑔(𝑠, 𝒓,𝑿 ) ≥
𝛼 ·max𝑠 𝑔(𝑠, 𝒓 ,𝑿 ), for some 𝛼 ∈ [0, 1] and given input 𝒓 and 𝑿 .

Approximation errors due to the oracle limit the ability of a

bandit to learn as measured by regret. Therefore, in the C
2
UCB

setting, 𝛼-regret is defined to focus only on performance due to the

bandit learner—cost due only to the oracle is not counted.

Definition 3. [59] Cumulative 𝛼-regret is the sum of expected
instantaneous regret, 𝑅𝑒𝑔𝛼𝑡 = 𝛼 · max𝑠 𝑔(𝑠, 𝒓★𝑡 ,𝑿𝑡 ) − 𝑔(𝑠𝑡 , 𝒓★𝑡 ,𝑿𝑡 ),
where 𝑠 is a super arm returned by an 𝛼-approximation oracle as a
part of the bandit algorithm.

When the reward function 𝑔 is chosen to be monotonic and

Lipschitz continuous, C
2
UCB enjoys �̃� (

√
𝑇 ) 𝛼-regret [56, 61]. The

sub-linear regret bound implies that a per-round average cumu-

lative regret approaches zero after sufficiently many rounds. The

latter provides us with a much needed safety guarantee on worst-

case performance, which is critical in production systems.

This regret bound builds on the several assumptions we made

along the way. While these assumptions are satisfied in our de-

sign, the linearity assumption of rewards on the context requires

more explanation. While a context that perfectly represents the

environment and the arm would meet the assumption, it can lead

to a lengthy context. Such a context would provide an optimal yet

slow convergence. Fortunately, bandits are robust to environmental



noise in practice, allowing flexible context design even if it devi-

ates from the linearity assumption. Therefore, a trade-off can be

made to have a well-designed smaller context that results in more

knowledge sharing and faster convergence.

4 DESIGN AND IMPLEMENTATION
Bandits have been successfully employed in the context of index

tuning before [59]. The previous attempt has addressed some of the

initial challenges for MAB-based physical design tuning. Amongst

them, the design of the reward, context, and oracle, are vital. De-

spite the promising preliminary progress in the narrowed scope of

index tuning, practical physical design tuning must address several

additional challenges. a) Ability to tune several PDS holistically and

b) Ability to handle exploration over a vast action space efficiently.

It would be relatively straightforward to design bandits that

focus on a smaller scope (e.g. tuning indices for one table only)

and possibly combine the results later, similar to an iterative so-

lution [6, 62]. Previous work in physical database design tuning

however discusses the importance of holistically searching through

the combined space of PDS to achieve optimal results [1, 78]. We

introduce a new bandit architecture that uses a hierarchy of ban-

dits and optimiser knowledge to overcome these challenges. Our

architecture allows for a straightforward and customised design

for individual PDS, while considering all PDS holistically.

4.1 An Overview
The hierarchical architecture comprises two layers of bandits (see

Figure 1). Encouraged by successful uses of candidate selection to

reduce the search space [1, 15], the first layer bandits (L1) select the

candidates for the responsible scope. All the candidates selected by

L1 bandits form the arms for the second layer (L2) bandit, which

searches through the combined action space. Finally, the L2 bandit

learns from all the observations and feeds the relevant rewards to

the L1 bandits.

One of the crucial properties of this architecture is that we can

easily add and remove bandits in L1 without any disruption to the

L2 bandit and its already learned knowledge. This property allows

our system to change the action space at any moment. For example,

moving from the combined space of indices and views to an index-

only space can be done without any disruption. In those instances,

we can save the current state of the bandits before shutting them

down. The saved state can be leveraged to warm-start the bandits

if we want to (re)create them in the future [57]. Furthermore, this

architecture facilitates parallel execution of bandits in L1, which can

be crucial in multi-core and distributed processing environments.

4.2 Design of L1 and L2 Bandits
Bandits in L1 are divided into two main sets (referred to as clusters).
Cluster 1 bandits tune views for the whole database, whereas cluster

2 bandits tune indices for each table. Although we used 2 clusters,

any clustering of L1 bandits is valid. As explained later, clustering

will allow knowledge sharing between bandits. Each bandit picks

a set of arms that fits inside the memory budget.

4.2.1 Arm Generation. Naïve arm generation based solely on the

database schema can quickly lead to an explosion in the number

of arms. Thanks to the natural skewness in the workloads, some

unused column subsets can be ignored entirely [2]. Workload-based

arm generation can focus on smaller subsets of columns, which are

present in the workload at a time. Workload-based dynamic arm

addition is only possible because our bandit setting permits the

definition of arms at the start of each round.

Index arms are generated based on the combinations and per-

mutations of query predicates and payloads. The arm generation

for views starts by identifying frequent table subsets. The frequent
table subsets refer to table subsets that frequently occur in queries

while noticeably contributing to the total workload time. This com-

putation follows [1], and depends on two crucial measurements: 1)

subset value: total execution time of queries where the table subset

occurs and 2) subset size: sum of the total number of rows in the

tables included in the table subset. After identifying frequent table

subsets, we generate view arms for each query where frequent

table subsets are present. Arms will be generated using the subset

of predicates and payload belonging to the frequent table subset,

with and without the ‘GROUP BY’ clause.

4.2.2 Context Design. Each bandit in HMAB can have a different

context. Oppose to monolithic bandit design [59], any changes

to the database schema will only impact a single bandit working

in a narrowed scope. Furthermore, context design only needs to

capture attributes in the narrowed scope. Oppositely, a monolithic

context that includes attributes of all the physical design structures

would require a sparse but high-dimensional representation, which

would negatively impact the convergence and running time of the

solution.
1
We use three different context designs across different

bandits in HMAB (see Figure 1 for examples).

a) Context design for index tuning: Following the successful

context design of [59] for index tuning, we use a similar two-part

context with some modifications. The first part of the context en-

codes the index prefix and makes a reward distribution biased

towards the columns that come earlier in the order. Accordingly,

there is a context feature representing each column in the table with

a value 10
−𝑗

where 𝑗 is the corresponding column’s position in the

index (if a column is included in the index, 0 otherwise). The second

part of the context includes three context features: 1) a Boolean

that marks high-value arms,
2
2) a Boolean indicating a covering

index and 3) size and existence feature. The size and existence feature
of a PDS provides information about the PDS’ existence as well as

its size. It contains the estimated size of the PDS as a fraction of

database size if not materialised already, 0 otherwise.

b) Context design for view tuning: The context for view

bandit has three parts. The first part is similar to the index tuning

bandit with two crucial differences. First, as this bandit works in the

scope of the entire database, we have context features representing

each column in the database. Second, unlike index tuning context,

we use a simple one-hot representation. Columns included in a view

do not have a clear order unless the view query specifically forces an

order, which is optional. The second part of the context comprises

features representing each table in the database and uses one-hot

encoding to mark the tables included in the view. In the third part of

1
C
2
UCB has𝑂 (𝑡 (𝑑3 + 𝑘𝑑 + ℎ)) time complexity, where h is the complexity of the

oracle [61]. Note that the complexity heavily depends on the size of the context 𝑑 .
2
arms that can avoid expensive table scans that are worth at least 10% of the total

execution time
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Figure 1: An example overview: index and view recommendation with HMAB.

the context, we have three context features: 1) a Boolean indicating

if the view query has filtrations (a WHERE clause), 2) a Boolean

indicating if the view query has grouped aggregations (a GROUP
BY clause), and 3) the size and existence feature.

Changes to the schema could invalidate the learned knowledge

from the responsible table bandit and view bandit. Nevertheless,

this design substantially improves over the state-of-the-art bandit-

based solution [59], which invalidates all learned knowledge on

schema change. In practice, this issue could further be alleviated

by leveraging warm-start techniques [57].

c) Context design for L2 bandit: L2 bandit context is divided
into two main parts, each with a length equal to the number of L1

clusters. The context will only have values in the features relevant

to the origin cluster (since all the L2 arms originate from L1 bandits)

and 0 otherwise. The first part will hold the expected gain for that

arm as predicted by the L1 bandit, and the second part contains

the the size and existence feature. Having more clusters can provide

more accurate convergence, whereas fewer clusters provide faster

convergence through better knowledge sharing.

4.2.3 Design of the Oracle. In C
2
UCB, the oracle’s goal is to select

a super arm based on the scores of the individual arms. Submodular

(diminishing returns) super-arm value functions represent a well-

motivated class with greedy oracles with 𝛼 = 1 − 1/𝑒 that are

efficient and near-optimal [55]. We use a greedy oracle coupled

with filtration steps to encourage diversity. The super arm selection

process happens inmultiple iterations. In each iteration, we greedily

select the arm with the maximum score from the available set of

arms. Afterwards, we filter similar arms based on prefix matching

along with arms that are not viable under the remaining memory

budget. This process continues until we exhaust the memory budget

or viable actions.

4.2.4 Design of the Reward. The reward design is essential to guide
the bandit in the correct direction. Our implementation aims to

minimise the total workload time, which is the sum of PDS creation

time, query execution time, and PDS recommendation time. Rec-

ommendation time depends on our algorithm and does not depend

on the bandit’s actions. Therefore, we incorporated only creation

time and query execution time in our reward. Nevertheless, we

measure and report the recommendation time for each tool in our

experiments.

We now define the score 𝑟𝑡 (𝑖) for each arm 𝑖 , based on creation

time and execution time gain, in round 𝑡 as below:

𝑟𝑡 (𝑖) = 𝐺𝑡 (𝑖,𝑤𝑡 , 𝑠𝑡 ) −𝐶𝑐𝑟𝑒 (𝑠𝑡−1, {𝑖}) .

𝐶𝑐𝑟𝑒 (𝑠𝑡−1, {𝑖}) is the creation cost of arm (PDS) 𝑖 for configura-

tion 𝑠𝑡−1 and 𝐺𝑡 (𝑖,𝑤𝑡 , 𝑠𝑡 ) is the execution time gain provided by

each arm 𝑖 for a workload𝑤𝑡 under configuration 𝑠𝑡 .

The creation time is taken as a negative reward, only if 𝑖 is mate-

rialised in round 𝑡 , and 0 otherwise. It is relatively straightforward

to capture the creation cost from execution statistics, however exe-

cution time gain from a PDS is scattered across multiple operators

in the query plan. The most obvious one among them is the data

scan operator. The gain from the data scan (𝐺𝑑𝑠
𝑡 ) operations can be

computed using the data scan times before and after PDS creation.

However, there are some costs in the query plan which can be

difficult to attribute to a single PDS, which we refer to as unclaimed

gains (𝐺𝑢𝑛
𝑡 ). As shown below, we take the total execution time gain

as a sum of these two types of gains. These gains are computed



only for PDS used by the optimiser and taken as 0 otherwise.

𝐺𝑡 (𝑖,𝑤𝑡 , 𝑠𝑡 ) = 𝐺𝑑𝑠
𝑡 (𝑖,𝑤𝑡 , 𝑠𝑡 ) +𝐺𝑢𝑛

𝑡 (𝑖,𝑤𝑡 , 𝑠𝑡 ) .

Data scan gains: By defining U(𝑠, 𝑞) as the list of PDS used

by the query optimiser for data access in query 𝑞 under a given

configuration 𝑠 , the data scan gain by arm 𝑖 for query 𝑞 is defined

as:

𝐺𝑑𝑠
𝑡 (𝑖, {𝑞}, 𝑠𝑡 ) =

∑︂
𝜏 ∈B
[𝐶𝑡𝑎𝑏 (𝜏, 𝑞, ∅) −𝐶𝑡𝑎𝑏 (𝜏, 𝑞, {𝑖})] 1U(𝑠,𝑞) (𝑖) .

Where B represents all the tables over which the PDS 𝑖 is created.

For indices B only includes the table for which an index belongs

to, whereas for views B can contain multiple tables. 𝐶𝑡𝑎𝑏 (𝜏, 𝑞, ∅)
represents the full table scan time for table 𝜏 in query 𝑞.3 Notice that

data gain can be negative if the use of PDS leads to a performance

regression.

Unclaimed gains: The use of PDS can impact the query plan in

very subtle ways which cannot be easily attributed to a single PDS.

For example, introducing a new index can trigger the optimiser to

choose a different query plan. Even when the index use provides

a faster data scan, new query execution can take more time due

to an inefficient nested loop join. Even though this issue arises

from the optimiser, HMAB needs to synchronise with the optimiser

and possibly take corrective actions to trigger a different query

plan to improve execution time. These gains can be computed by

comparing the query running times before and after index creation.

We compute the total query gain (𝐺𝑡𝑜
𝑡 ) as:

𝐺𝑡𝑜
𝑡 ({𝑞}, 𝑠𝑡 ) = [𝐶𝑡𝑜 (𝑞, ∅) −𝐶𝑡𝑜 (𝑞, 𝑠𝑡 )] .

where 𝐶𝑡𝑜 (𝑞, 𝑠𝑡 ) represents the total running time under config-

uration 𝑠𝑡 . Once the data scan gain is calculated, we calculate the

total unclaimed gains for a query by subtracting the data scan gain

from the total query gain. Then, we equally divide this cost amongst

participating PDS (U(𝑠, 𝑞)). The gain for a workload relates to the

gain for individual query by:

𝐺𝑡 (𝑖,𝑤𝑡 , 𝑠𝑡 ) =
∑︂
𝑞∈𝑤𝑡

𝐺𝑡 (𝑖, {𝑞}, 𝑠𝑡 ) .

It can be shown that maximising individual arm rewards is equal

to the original goal of minimising the total workload time 𝐶𝑡𝑜𝑡 .

Using the execution time gain in the place of execution time and

ignoring the recommendation time:

𝑅𝑡 (𝑠𝑡 ) = [𝐶𝑒𝑥𝑐 (𝑤𝑡 , ∅) −𝐶𝑒𝑥𝑐 (𝑤𝑡 , 𝑠𝑡 )] −𝐶𝑐𝑟𝑒 (𝑠𝑡−1, 𝑠𝑡 )

≈
∑︂
𝑖∈𝑠𝑡

𝐺𝑡 (𝑖,𝑤𝑡 , 𝑠𝑡 ) −
∑︂
𝑖∈𝑠𝑡

𝐶𝑐𝑟𝑒 (𝑠𝑡−1, {𝑖})

=
∑︂
𝑖∈𝑠𝑡

𝑟𝑡 (𝑖) .

The reward includes creation cost and execution cost gain guid-

ing the HMAB to optimise for efficiency and recommendation qual-

ity.

3
The bandit only identifies the arms for a query after its first appearance in the

workload. Therefore, naturally, when a query is observed for the first time, the system

does not have a supporting PDS for the query, and we observe a full table scan time

for each table. When we do not observe full table scan time, we estimate it with the

maximum secondary index scan/seek time.

Algorithm 2 Hierarchy of Bandits for PDS Tuning

1: QS← 𝑄𝑢𝑒𝑟𝑦𝑆𝑡𝑜𝑟𝑒 () ⊲ keeps query information

2: L2Bandit← 𝑔𝑒𝑡𝐿2𝐵𝑎𝑛𝑑𝑖𝑡 () ⊲ A1, L 1-2

3: while (TRUE) do
4: config← 𝑟𝑒𝑎𝑑𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝐶𝑜𝑛𝑓 𝑖𝑔()
5: queries← 𝑔𝑒𝑡𝐿𝑎𝑠𝑡𝑅𝑜𝑢𝑛𝑑𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑 ()
6: for all 𝑞𝑢𝑒𝑟𝑖𝑒𝑠 do
7: if (isNewTemplate) then
8: 𝑄𝑆.𝑎𝑑𝑑 (𝑞𝑢𝑒𝑟𝑦)
9: else
10: 𝑄𝑆.𝑢𝑝𝑑𝑎𝑡𝑒 (𝑞𝑢𝑒𝑟𝑦)
11: end if
12: end for
13: QoI← 𝑄𝑆.𝑔𝑒𝑡𝑄𝑜𝐼 () ⊲ get queries of interest

14: L1Bandits[]← 𝑔𝑒𝑡𝐿1𝐵𝑎𝑛𝑑𝑖𝑡𝑠 (𝑐𝑜𝑛𝑓 𝑖𝑔,𝑄𝑜𝐼 ) ⊲ A1, L 1-2

15: L1arms[]← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐿1𝐴𝑟𝑚𝑠 (𝑄𝑜𝐼 )
16: L1X[]← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐿1𝐶𝑜𝑛𝑡𝑒𝑥𝑡 (𝐿1𝑎𝑟𝑚𝑠,𝑄𝑜𝐼 )
17: for all 𝐿1𝐵𝑎𝑛𝑑𝑖𝑡𝑠 do
18: rect[bId]← bandit.𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑 (𝑎𝑟𝑚𝑠 [𝑏𝐼𝑑], 𝑋 [𝑏𝐼𝑑])
19: end for
20: L2arms← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐿2𝐴𝑟𝑚𝑠 (𝑟𝑒𝑐t)
21: L2X← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐿2𝐶𝑜𝑛𝑡𝑒𝑥𝑡 (𝐿2𝑎𝑟𝑚𝑠, 𝐿1𝑋 )
22: st ← L2Bandit.𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑 (𝐿2𝑎𝑟𝑚𝑠, 𝐿2𝑋 ) ⊲ A1, L 4-10

23: st ← ℎ𝑦𝑝𝐶ℎ𝑒𝑐𝑘 (𝑠t)
24: Ccre ←𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑖𝑠𝑒 (𝑠t)
25: Cexc ← 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑 ()
26: L2Bandit.𝑢𝑝𝑑𝑎𝑡𝑒𝑊𝑒𝑖𝑔ℎ𝑡𝑠 (𝐶cre,𝐶exc) ⊲ A1, L 12-13

27: for all 𝐿1𝐵𝑎𝑛𝑑𝑖𝑡𝑠 do
28: bandit.𝑢𝑝𝑑𝑎𝑡𝑒𝑊𝑒𝑖𝑔ℎ𝑡𝑠 (𝐶cre,𝐶exc) ⊲ A1, L 12-13

29: end for
30: end while

4.3 Hypothetical Checks: A Minimal Use of the
Optimiser to Reduce Exploration Cost

Previous efforts using bandits for index tuning [59], which depends

on observations from actual PDS materialisations, suffered from

high creation costs while exploring. This is compounded with views.

While it is imperative to learn from the actual PDS materialisations,

we cannot depend on them entirely, due to the high creation cost.

Hypothetical checks are a simple yet effective solution to drasti-

cally reduce creation cost with minimal use of optimiser knowledge.

A hypothetical check happens between the arm selection and ma-

terialisation, under a what-if analysis based on the optimiser cost

model. While the optimiser cost model can be wrong in ranking

the best index for a query, it has the last say in what indices are to

be used in query execution. Therefore, it is necessary to be in sync

with the optimiser recommendations. In our bandit setting, we use

hypothetical checks to find the arms that will not be picked and

prune them (i.e., give 0 reward) without ever materialising them.

4.4 Putting it all together
Consider a scenario where HMAB’s target is to recommend a set of

indices and views (see Figure 1). First, the system observes the work-

load and generates bandit arms for L1 bandits (step 1). For instance,

the view bandit in cluster 1 has four arms generated. Notice that
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Figure 2: HMAB vs. PDTool, execution time convergence for integrated view and index tuning under static workloads.
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Figure 3: HMAB vs. PDTool, end-to-end total workload time
for view and index tuning under static workloads.

each arm is accompanied by a context that will provide additional

information to the learner. Next, each L1 bandit selects the arms for

the L2 bandit (step 2: selected arms are coloured orange). After that,

the L2 bandit selects arms (step 3) that will be checked using the

what-if interface (steps 4 and 5). In this example, the learner under-

stands that the optimiser does not use𝑀𝑉 1 and the rest of selected

PDS (𝑀𝑉 4, 𝑇𝐴𝐵_𝑁_𝐼𝑋2) will be materialised in the database (step

6). Then, both L1 and L2 bandits will observe the actual workload

execution to understand the actual gain/reward by the created PDS

(step 7). Finally, the calculated reward will update all the bandits

and learn the weight vectors (step 8).
4
The bandit can choose to

forget the learned knowledge based on the workload shift intensity

(i.e., the number of newly introduced query templates) [59].

4.5 Implementation
Algorithm 2 outlines the implementation of our C

2
UCB [61] bandit

system. First, we use a query store to track the queries we observe

and their properties (last seen time, first seen time, frequency, table

level selectivity, running times). The query store is later used to

generate the queries of interest (QoI). While QoI can consist of all

queries the learner has observed, the filtration step allows selection

of a subset of queries for arm generation. For example, queries that

were not observed for many rounds, or fast queries that contribute

negligibly to the total workload time may be pruned.

4
In this step, we leverage a ‘focus update’ introduced in [60].

While the L2 bandit can be initialised at the beginning, the L1

bandit initialisation depends on the current workload and current

configurations (i.e., what PDS types to tune). Bandits will be ini-

tialised only when not already available; otherwise, the old instance

of the bandit will be used. After setting up, each L1 bandit will be

called for recommendations along with their estimated scores. The

L1 recommendations and estimated scores help generate arms and

context for the L2 bandit, which makes final recommendations (i.e.,

super arm). Note that the bandit initialisation, arm recommendation,

and weight update, call the functions from the C
2
UCB Algorithm 1.

5 EXPERIMENTAL RESULTS
In this experimental section, we demonstrate the ability of our

tool to outperform state-of-the-art physical design tuning systems

for index and materialised view selection. There are not many

PDS tuning tools that can work in an integrated search space of

multiple physical design structures, and none of them is learning-

based. Therefore, we compare against a state-of-the-art commercial

physical design tool that works in the integrated search space,

which we refer to as the Physical Design Tool (PDTool). Recent

studies have shown that the PDTool outperforms other tuning tools

available on the market [7, 36]. Furthermore, we test against nine

index selection algorithms covering a wide range of approaches.

5.1 Experimental Setup
We test against four publicly available benchmarks. Amongst them,

there are three industrial benchmarks (a) TPC-H (uniform) [68]:

A widely used decision support benchmark. (b) TPC-H Skew [52]

with Zipfian factor 4: TPC-H with skewed data distribution, allow-

ing the readers to understand the impact of data skewness when

all the other aspects are kept identical. (c) TPC-DS [54]: A com-

plex and modern benchmark commonly used as the gold standard.

Other than these three industrial benchmarks, we use well known

real-world IMDb dataset with Join Order Benchmark (JOB) [44].

A massive action space generated by a high number of joins in

JOB queries makes it extremely challenging for view selection. All

the experiments are performed over the combined action space of

indices and views, on 10GB (i.e., SF10) databases, with a memory

budget approximately equal to the size of the data unless mentioned

otherwise.
5
We experiment using two workload types:

5
The IMDb dataset has fixed size of 6GB.
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Figure 4: HMAB vs. PDTool, execution time convergence for integrated view and index tuning under dynamic randomworkloads.
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Figure 5: HMAB vs. PDTool, end-to-end total workload time
for view and index tuning under dynamic randomworkloads.

Static: A repeating workload similar to what is typically found

in reporting applications. In the absence of dynamic environment

complexities, this setting is used to apprehend the accuracy and

overhead of the bandit search strategy. The static workload runs

for 25 rounds giving sufficient time to observe the convergence. In

each round, a different query instance for every query template

will be executed (i.e., 22, 99 and 33 templates for TPC-H, TPC-DS

and IMDb, respectively). PDTool is invoked once per experiment at

the start of round two with round one workload as input.

Dynamic random: A natural dynamic query sequence com-

prises new and returning queries mimicking modern ad-hoc work-

loads (such as cloud services). While tuning tools need to adapt

to the new queries, reacting too soon can result in unwanted PDS

oscillations. A tool’s effectiveness depends on the delicate balance

between swift and careful adaptation. The number of queries in the

dynamic random setting is similar to the static setting, but queries

are chosen randomly and contain around 45-55% of repeating query

templates (with different query instances). Identifying the repre-

sentative workload for an offline tuning tool is almost impossible

when the workload is dynamic. Therefore, it is a common practice

to periodically (e.g., nightly or weekly) invoke the PDTool with

all the queries observed from the last invocation. In our setup, we

invoke PDTool every four rounds, providing the queries from the

last four rounds as the representative workload.

Hardware: All experiments are conducted on an industrial-

grade server running Windows Server 2016 equipped with two 24

Core Xeon Platinum 8260 processors, 1.1TB RAM, and 50TB disk

(10K RPM). We report cold runs, clearing the database buffer caches

before each query execution.

5.2 Index and View Recommendation
In addition to comparing our approach against the state-of-the-

art commercial tuning tool, we use a baseline without any indices

(NoIndex). With the NoIndex baseline, we compare the execution

time gain and recommendation time loss against an untuned system.

Static: Figure 3 summarises HMAB performance under all bench-

marks comparing the total workload time of all three baselines.

Figure 2 (a-d) shows the convergence of execution time for each

benchmark. The convergence graph explains the effectiveness of the

recommended configurations. The exact total workload times and

component-wise breakdown (across recommendation time, creation
time and execution time) are reported in Table 1.

HMAB provides significant gains of 19%, 67% and 86% for TPC-H

Skew, TPC-DS, and IMDb benchmarks (see Figure 3). However, un-

der TPC-H, PDTool provides a 13% better total workload time. This

result is anticipated since the TPC-H benchmark provides a uniform

dataset, perfectly matching the offline tuning tool’s assumptions.

Under TPC-H, as shown in Figure 2 (a), both tools perform equally

well and recommend configurations that converge to similar execu-

tion times with HMAB slightly behind (PDTool provides 3% better

total execution time). PDTool’s gain in the total workload time

under TPC-H is mainly due to the higher creation costs of HMAB,

which is expected from a system that forms decisions on actual PDS

materialisations and execution statistics. The bandit learns better

configurations with skewed datasets (TPC-H Skew, TPC-DS and

IMDB), justifying the creation time overhead (see Figure 2 (b-d)).

Based on last round execution time gains, 20%, 12%, 1.2% and 0.8%

of the improvement for HMAB under TPC-H, TPC-H skew, TPC-DS

and IMDb benchmarks, respectively, come from views, whereas the

rest comes from indices. Views tend to provide substantial support

for very few queries, whereas indices support a wider range of

queries albeit to a smaller extent. Creating views that target a few

templates is thus of limited help when we have a large number of

query templates (such as in TPC-DS, IMDb).
6
Other than that, in

6
On the contrary, in a test done with the SSB benchmark, over 10GB dataset and static

workload with only 13 templates, 76% of the execution time gain is provided by views.



Table 1: HMAB vs. PDTool total workload time breakdown (min): the best option is highlighted in blue.

Workload

Recommendation Creation Execution Total Exploration**

PDTool MAB PDTool MAB PDTool MAB PDTool MAB PDTool MAB

Static

TPC-H 2.12 1.28 8.58 15.97 45.66 47.54 56.36 64.78 10.7 17.25

TPC-H Skew 2.12 1.74 13.15 27.16 53.82 26.64 69.08 55.54 15.27 28.9

TPC-DS 499.54 5.99 4.01 20.89 228.72 211.4 732.27 238.29 503.55 26.88

IMDb 154.15 9.32 1.25 3.41 13.81 10.64 169.21 23.37 155.4 12.73

Random

TPC-H 139.77 1.38 27.79 12.99 82.09 74.63 249.66 89 167.56 14.37

TPC-H Skew 80.08 1.35 37.76 51.77 68.18 43.16 186.02 96.27 117.84 53.12

TPC-DS 2639.14 17.25 14.6 10.68 260.68 214.43 2914.41 242.36 2653.74 27.93

IMDb 594.37 11.5 2.76 2.88 240.36 14.22 837.49 28.6 597.13 14.38

**Exploration time = Creation time + Recommendation time

TPC-DS, we have one index responsible for more than 85% of the

gain, compared to which the view contribution looks smaller. Other

than the gain from execution time, HMAB’s lightweight execution

in TPC-DS and IMDb provides noticeable gains in recommendation

time compared to costly PDTool invocations (see Table 1). Large

recommendation times for PDTool are attributed to a large number

of view candidates under IMDb and TPC-DS benchmarks, which

HMAB swiftly handles (e.g., HMAB works with 11700 and 500

view-arms for IMDb and TPC-DS, respectively)

While the TPC-H line appears steady, it is possible to observe

slight variations in execution times for other benchmarks. While we

are repeating the same set of templates in each round, it is essential

to note that we use different instances. Consequently, different

instances of the same template can have different execution times as

the data is skewed. For example, we see some instances of IMDbQ20

taking five times longer than other instances, creating the pattern

we see in the IMDb convergence graph (Figure 2 (d)). Other than

these minor variations, we can observe a few big spikes in rounds 8,

12, 17, 20 and 25 for PDTool under the TPC-H skew benchmark (see

Figure 2 (b)). These spikes are due to PDTool missing critical index

𝑂𝑟𝑑𝑒𝑟𝑠.𝑂_𝑐𝑢𝑠𝑡𝑘𝑒𝑦 which supports some instances of Q22. Similar

TPC-H Skew spikes can be observed in other experiments as well.

Dynamic random: Figure 5 provides a summary of HMAB per-

formance under dynamic random workloads. HMAB outperforms

PDTool under all benchmarks, providing 64%, 48%, 91% and 96%

gains under TPC-H, TPC-H Skew, TPC-DS and IMDb benchmarks,

respectively. The percentage execution time gain from views has

gone down to 19%, 8%, 4% and 0% for TPC-H, TPC-H skew, TPC-DS

and IMDb benchmarks. Higher creation costs in dynamic environ-

ments favour indices with a low d footprint. Furthermore, as ob-

servable from Figure 4 (a-d) due to the random selection of queries,

we do not see a steady line in convergence graphs as we did in

static settings, even for TPC-H. In addition, there are interesting

spikes in the IMDb graph (Figure 4 (d)) that we need to explain.

The IMDb benchmark challenges optimisers with numerous

joins, leading to sub-optimal PDS choices. Consequently, IMDb

queries frequently run faster without any PDS. The spikes are

caused by Q29 of IMDb, which occurs multiple times per round

giving rise to spikes of different sizes (in round 17, there are three

occurrences, whereas, in round 18, there is only one). IMDb Q29 is a

seemly negligible query with 4.5 s no index running time. However,

after the fourth invocation (round 16), PDTool creates an index on

𝑡𝑖𝑡𝑙𝑒 , 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛_𝑦𝑒𝑎𝑟 columns in the 𝑡𝑖𝑡𝑙𝑒 table. This index leads

to a nested loop that runs for more than 10 mins, due to erroneous

cardinality estimations. In such a situation, HMAB’s approach is to

drop the PDS that triggered the erroneous execution plan.

5.3 Index Selection
Due to the broad applicability of indices and their low memory foot-

print, index-only configurations are popular amongst DBAs. In this

section, we showcase the capability of this new bandit framework

to surpass PDTool, Microsoft’s AutoAdmin [15], Relaxation [9] and

DTA Anytime [14], IBM’s DB2 Advisor [70], iterative Extend [64]

algorithm, heuristic-based Drop [75] algorithm, PostgreSQL’s Dex-

ter [34] and reinforcement learning based UDO [74] and DBABan-

dit [59]. We extended the implementations found in [34, 37, 73] to

work with the commercial database system we use. We experiment

against TPC-H, TPC-H Skew and TPC-DS benchmarks under static

workloads. We have used the default configurations from these im-

plementations for all the tests. We further experiment and discuss

the impact of varying the main parameters.

As evident from results in Table 2, HMAB outperforms all the

tools in total workload time under both TPC-H Skew and TPC-DS

whereas, under TPC-H, PDTool performs the best but is closely

followed by HMAB and Extend. Considering execution time alone,

HMAB performs best in TPC-H Skew and TPC-DS whereas, under

TPC-H, Relaxation performs better. As expected HMAB records

high creation times. In recommendation time, HMAB is only second

to DB2 Advisor, which provides lightning-fast recommendations

without much loss of recommendation quality.

Index width:While the default configuration runs with an in-

dex width of 2 columns we tried a few other index widths (6 and

10) in search of the best configurations.
7
Higher index widths help

to reduce the execution time while they greatly increase the recom-

mendation time leading to a higher total workload time. However, in

some cases, the overall gain was positive. We used the best timings

across tested index widths for Table 2.

Other parameters: Dexter is tested with different minimal cost-

savings percentages and we report the best results in the table (with

5%). For AutoAdmin and Drop the total number of indices was set

to fill the memory budget.

Recommendation time: Externally invoking hypothetical cost

requests take much longer compared to an internalised implemen-

tation. This is an unfair comparison for tools that externally use

7
Dexter and Drop were not expandable beyond 2 columns.



Table 2: Total workload time (min) breakdown for index tuning under TPC-H, TPC-H Skew and TPC-DS static workloads: the
best option is highlighted in blue.

TPC-H TPC-H Skew TPC-DS
Rec. Cre. Exec. Total Rec. Cre. Exec. Total Rec. Cre. Exec. Total

DBABandit 0.08 9.02 58.63 67.73 0.1 15.1 43.55 58.75 1.47 12.86 262.88 277.21

PDTool 0.88 8.07 46.79 55.74 0.89 12.59 55.32 68.8 16.39 3.8 277.22 297.41

HMAB 0.22 8.62 47.76 56.6 0.15 20.86 30.39 51.4 1.14 7.76 219.98 228.88

UDO 552 4.35 96.4 652.75 1113.38 14.39 44.54 1172.31 N/A N/A N/A N/A

Anytime 5.68 5.66 45.34 56.68 7.33 8.88 35.36 51.57 39.88 7.29 308.47 355.64

AutoAdmin 1.94 4.61 80.4 86.95 2.73 11.91 44.32 58.96 28.99 4.94 273.87 307.8

DB2Advis 0.01 4.09 89.2 93.3 0.01 15.52 43.23 58.76 0.09 4.27 279.97 284.33

Dexter 0.05 1.37 103.46 104.88 4.7 5.97 53.78 64.45 9.22 1.86 674.06 685.14

Drop 0.32 5.33 88.75 94.4 0.32 13.82 75.41 89.55 56.35 0.34 694.39 751.08

Extend 1.09 3.16 52.35 56.6 0.52 8.91 81.51 90.94 9.49 3.41 702.73 715.63

Relaxation 25.91 3.37 43.23 72.51 8.75 15.01 35.67 59.43 567.39 4.3 365.38 937.07

Rec. = Recommendation time, Cre. = Creation time, Exec. = Execution time, N/A = Not available

the hypothetical index simulations. Therefore to create a level play-

ing field, we discounted the recommendation times for all taking

12.7 ms for a cost request and 0.25 ms for index simulations based

on the findings from [36]. For example, the recommendation time

for DTA Anytime algorithm drops from 40.63 minutes to 3.44 min-

utes after discounting. While this discounting favours the tools that

heavily rely on hypothetical indices, still HMAB performs better

than all the other tools in TPC-H Skew and TPC-DS.

5.4 View Selection
Here we test HMAB against PDTool and three heuristic baselines

from [29] (see Figure 6). These baselines greedily select the best

views based on three different metrics collected using isolated hy-

pothetical executions: a) TopValue: execution time gain (𝐺𝑡𝑜
), b)

TopUValue: 𝐺𝑡𝑜
/size, and c) TopFreq: view usage frequency. In

TopFreq, ties are broken using 𝐺𝑡𝑜
. These heuristic approaches do

not consider the view interactions, thus leading to less performant

view recommendations. The views created by PDTool and HMAB

differ in their use of filters with specific predicates. While filtered

views use less space, they are unusable with other predicate val-

ues. For example, a filter PART.P_NAME like ‘%pink%’ gets used
only three times, creating sudden drops in the convergence graph

(rounds 8, 17 and 19). On the other hand, HMAB does not create

any views with such filters allowing them to be widely used across

multiple queries. HMAB converges to a 21.6% better configura-

tion. However, due to high execution times in the early rounds and

higher creation costs HMAB records an 8.8% longer total workload

time.

5.5 Impact of Changing L1 bandits
One of the crucial features of HMAB is the ability to add and remove

L1 bandits without any disruption to the learned knowledge of L2

bandit and other L1 bandits. In this experiment, we require the

tuning tool to first tune indices and materialised views. After the

10th round, we change the requirement to tune only indices and

then revert back to indices and views after round 20. PDTool is

invoked at rounds 1, 11 and 21 to tune for respective PDS sets.

We run the experiment for a total of 30 rounds. Figure 7 plots the
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Figure 6: Execution time con-
vergence for view tuning un-
der static workloads.
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Figure 7: HMAB vs. PDTool
total end-to-end workload
time convergence for static
workloads with changing
PDS sets.

total workload time per round which showcases the overhead of

changing PDS types as it includes the recommendation and creation

times.

We can notice large spikes for PDTool in rounds 1, 11, and 21 due

to recommendation times and index creation times. On the other

hand, HMAB adapted to the changes smoothly. In rounds 11-13,

there are some spikes in the case of HMAB in search of the best

indices to fill up the space vacated by dropping views. At round 21,

HMAB created only 2 views at the expense of several small indices.

View creation took less than 5 seconds as both views had GROUP

BY clauses. This demonstrates that the learning from the first 10

rounds (i.e., views with a group by clause provide better rewards

with low space consumption), has been carried over without any

disruption. HMAB provides a 10.4% improvement in total workload

time over PDTool in this experiment.

5.6 Impact of Hierarchical Bandit Structure on
Recommendation Time

The recommendation time of HMAB contains two main compo-

nents: (a) running time of the bandit (i.e., running time of the code

ignoring the time taken for external dependencies such as index cre-

ation and query execution) (b) Time taken for hypothetical checks.
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Figure 8: HMAB with hypothetical checks vs. without.

In this section, we focus on the impact of hierarchical bandit struc-

ture on the running time of the bandit. To understand the impact,

we compare the running time of HMAB against DBABandit in a

static index tuning setting. In the index tuning setting, the main

difference between the two tools is that DBABandit uses one large

bandit, whereas HMAB uses a hierarchy of small bandits. We use

the TPC-DS benchmark for this experiment as it has the highest

number of tables resulting in 28 Level 1 bandits for HMAB. Under

the TPC-DS static setting, DBABandit records a 88 second running

time, whereas HMAB runs in 29 seconds (66% drop). While this

drop in recommendation time is negligible compared to the total

workload time, it demonstrates the scalability of the new architec-

ture. While running all the L1 bandits in parallel is possible; we did

not do that in the current implementation. Allowing the bandits to

run in parallel would enable even higher gains for HMAB, noting

its suitability for modern multi-processor systems.

5.7 Impact of Hypothetical Checks
Hypothetical checks noticeably reduce creation time, improving

the usability of the solution. This section compares the previous

results from four benchmarks against the identical bandit runs

that do not use hypothetical checks. The initial observation shows

three effects of hypothetical checks. Hypothetical checks: 1) reduce

the total creation time by removing unnecessary PDS creations, 2)

reduce total execution time by providing faster convergence, and

3) increase the recommendation time attributed to ‘what-if’ calls.

As shown in Figure 8 (a), hypothetical checks provide a 58%,

25%, 8% and 34% reduction in creation cost under TPC-H, TPC-H

Skew, TPC-DS and IMDb benchmarks, respectively. At the same

time, hypothetical checks add 0.8, 1.2, 6.0, and 6.8 minutes to the

total workload time under the benchmarks mentioned above. The

ultimate time saving from hypothetical checks can be identified by

comparing the total workload time in Figure 8 (b), where bandits us-

ing hypothetical checks provide 33%, 32% and 5% gain under TPC-H,

TPC-H Skew, TPC-DS benchmarks, and 5% loss under IMDb. A 6.8

minute addition to the total workload time is excessive compared

to IMDb’s short total workload time. It is important to note that

HMAB issues a minimal number of cost requests (‘what-if’ calls).

For example, PDTool considers around 1500 configurations and is-

sues more than 1.5M cost requests under the TPC-DS static setting,

where 8% of this is non-cached (around 130K requests) [36]. On

the contrary, HMAB only performs 25 configurations checks (one
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Figure 9: HMAB vs. PDTool, view and index tuning under
100GB databases and TPC-H static workloads.

per round) with around 2.5k cost requests for a 25 round HMAB

run. Thus, the number of optimiser calls by HMAB is negligible

compared to thousands of checks done by traditional tuning tools.

The ‘what-if’ analysis done through an external interface provided

by the commercial database however incurs a considerable recom-

mendation time increase for HMAB. An internal implementation

of the bandit system should reduce such recommendation costs.

5.8 HMAB’s Scalability for Larger Databases
We repeat the TPC-H uniform and TPC-H Skew static experiment

on 100 GB (SF 100) databases to answer two primary concerns:

1) practicality of materialisation-based search strategy for large

databases, 2) HMAB performance under large databases (compared

to SF 10 experiments). Overall, the results demonstrate the solution

fitness for larger databases and the potential for big data era.

Comparing the creation time against PDTool, HMAB records

6% gain and 35% loss under TPC-H and TPC-H Skew, respectively

(see Figure 9 (a)). As a percentage of total workload time, we notice

a clear reduction in HMAB creation time from SF 10 to SF 100

experiments (TPC-H: 24%→ 18%, TPC-H Skew: 48%→ 27%). This

reduction is due to the clear difference between arm scores in large

databases: the bandit can converge faster with less exploration.

Comparing the total workload time, HMAB outperforms PDTool

with 23% and 53% gains under TPC-H and TPC-H Skew, respectively

(see Figure 9 (b)). In both cases, the gains are higher compared

to SF 10 experiments. Under TPC-H skew, the impact of Q22 is

much higher (long-running Q22 instances takes around 5 hours),

demonstrating the catastrophic impact of sub-optimal PDS choices

in large databases. The result is exciting in TPC-H as this is the first

time we observe HMAB outperforming PDTool under TPC-H static

workload. This gain (4.2 hours) comes from execution time, which

cannot be assigned to a single query but is distributed across 14

queries. Drilling down, we observe that PDTool creates fivememory

heavy views leaving less than 20% of the space for indices. While

views provide excellent support for a few queries (e.g., Q5, Q17,

Q19, Q20), many others are not supported by any PDS (e.g., Q1,

Q3, Q6, Q7, Q14). HMAB finds a different balance and uses 94%

space for indices and the rest for views. This result portrays the

importance of finding the right balance when tuning multiple PDSs.
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Figure 10: HMAB vs. PDTool, view and index tuning for dif-
ferent memory budgets with TPC-H Skew static workloads.

5.9 HMAB’s Performance under Different
Memory Budgets

This section presents experiments across four different memory

budgets, 0.5X, 1X (original memory budget), 2X, 3X, under TPC-H

skew benchmark, to understand the memory budget’s impact on

solution fitness. As shown in Figure 10 (a), HMAB continuously

takesmore creation time under all memory budgets. Higher creation

times result from higher exploration in HMAB, which is required

to understand the highly skewed datasets. We detect that more

view exploration happens with larger memory budgets (e.g., 10

view arms are explored for 0.5x, whereas 15 view arms are explored

for the 3x memory budget). For lower memory budgets, HMAB

sticks to aggregated views with a low memory footprint (7 out of 10

selected view arms used GROUP BY), whereas with higher memory

budgets, more views without aggregation are tried (only 6 out of

15 views used GROUP BY in the case of 3x setting). With higher

memory budgets, HMAB can choose to preserve most of the PDS

it builds, reducing waste. Consequently, the percentage difference

between creation times from the two tools decreases with higher

memory budgets. Despite higher PDS creation costs, HMAB always

finds better configurations (see Figure 10 (b)). When considering

the total workload time, HMAB ends up providing 2%, 19%, 22%,

19% gain, under 0.5X, 1X, 2X and 3X memory budgets, respectively.

5.10 Success of HMAB’s Search Strategy
With the experimental results, it is clear that actual materialisation

and execution helped HMAB converge to better configurations in

terms of query execution time. However, this comes at the cost of

the creation time, where HMAB records higher creation times in 6

out of 8 times (see Table 1). The above observation poses questions

about the efficiency of the HMAB search strategy.

It is essential to note that PDTool focuses on exploration using

the ‘what-if’ analysis, and HMAB uses a combination of the ‘what-

if’ analysis and actual PDS creation. To truly understand how each

of these techniques performs, we need to compare the sum of

recommendation time and creation time, which we will refer to

as the exploration time. As observable in Table 1, 6 out of 8 times

HMAB records a better exploration time. It falls short only under

the TPC-H and TPC-H Skew static settings, where PDTool records

short recommendation times due to the low number of queries.

6 RELATEDWORK
PDS search space. The PDS tuning problem has been studied

for years [36, 47]. However, most tools work with a single design

structure. Index tuning has been the entry point for many PDS

tuning tools due to indices’ simpler and effective nature. There are

many traditional and learned solutions for index tuning [5, 10, 11,

20, 21, 29, 30, 41, 59, 63, 65, 66, 76]. Similarly, some efforts work

in the area of view tuning [4, 16, 24, 27, 39, 40, 42, 43, 53, 71, 72].

Nevertheless, there are only a few tools out there that can work in

the combined space of indices and views [1, 18, 78]. To the best of

our knowledge, there are not any learned tuning tools that work in

the combined action space of views and indices.

Fixing the optimiser misestimates using execution statis-
tics. All state-of-the-art physical design solutions are based on the

query optimiser cost estimates [13]. Such estimates are severely

misleading for non-uniform data distributions and under complex

workloads [21]. Recent efforts attempted to leverage execution sta-

tistics to alleviate these mistakes [19, 21]. [21] used regression to

mitigate the optimiser misestimates for the index tuning. This effort

however focused only on the index tuning and has not incorporated

views. While presenting highly promising results by avoiding cost

misestimates, the solution adds up to 10% recommendation time.

Learning based solutions in other areas of databases. Rein-
forcement learning has been used in many areas of database sys-

tems, including join ordering, query optimisation and configuration

tuning [33, 35, 51, 58, 69]. Furthermore, there are bandit solutions

used in the areas of monitoring, query optimisation and join order-

ing [23, 26, 48]. Hierarchical contextual bandit architectures have

been used for performance prediction in cloud databases [49]. There

are modern, adaptive data structures [25, 31] as well as learned mod-

els [22, 32, 38] that can replace the traditional data structures. These

efforts complement our efforts, and HMAB can be extended to work

with those index structures.

Use of workload forecasting to avoid cost start problem
Workload forecasting [46, 50, 77] is an exciting research area that

can complement both traditional and learned PDS tuning approaches.

Forecasted workloads can be used to identify potential PDS early

on and curtail PDS oscillations, reducing the exploration overhead.

7 CONCLUSIONS
This paper proposes a hierarchical multi-armed bandit framework

for physical database design tuning, the first learned solution to

work in the combined space of indices and views. Tapping into the

optimiser knowledge while learning based on strategic exploration

and observation allows our solution to eschew costly optimiser

misestimates and heavy PDS creation times to provide significant

performance gains. Our comprehensive experiments against a state-

of-the-art commercial physical design tool under well known com-

plex industrial benchmarks demonstrate the solution fitness by

providing 40% and 75% average speed-up in static and random

settings, respectively.
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