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Abstract—Learned indices using machine learning techniques
have demonstrated potential as alternatives to traditional indices
such as B-trees in both query time and memory. However, a
well fitted learned index requires significant space consumption
to train models and tune parameters. Furthermore, fast training
methods—ones that train in one pass—may not learn the data
distribution well. To consider both the fitness to data distribution
and building efficiency, in this paper, we apply pre-trained models
and fine-tuning to accelerate the building of learned indices by
30.4% and improve lookup efficiency by up to 24.4% on real
datasets and 22.5% on skewed datasets.

Index Terms—learned index, model reuse, fine-tuning

I. INTRODUCTION

Learned indices – a technique that uses machine learning
techniques as an alternative to database indices – has been
shown to outperform traditional indices such as B-trees in
both query time and memory consumption [1]–[3]. Given a
dataset (e.g., a database table), an index is a structure that
maps the index key p.key of a data record p to its storage
address p.addr. The idea of learned indices is to train a
machine learning model M (e.g., a neural network or linear
regression) to approximate the mapping from p.key to p.addr,
i.e., to learn the cumulative distribution function (CDF) of the
dataset, assuming records are stored in key-sorted order [1].
The trained model M can predict p.addr with a bounded
error range [errl, erru], i.e., the data record p can be found
in the range of [M(p.key)− errl,M(p.key)+ erru] [3] with
a binary search. Here, errl and erru are the minimal and
maximal training errors of M.

While learned indices have efficient query procedures, they
can be prone to slow building, since machine learning models
are expensive to train. The bottleneck of index building is that
every data record within the training set will be fully scanned
in each epoch with at least one epoch during learning.Even
with simple models such as linear regression, a learned index
such as the recursive model index (RMI) [1] is more than
an order of magnitude slower to build than a B-tree [2].
Meanwhile, techniques that learn indices in a single pass such
as RadixSpline [4] (RS) and PGM [3] still require a nested
loop to build, e.g., to check the validity of given error bounds

for every key. They also tend to produce sub-optimal indices
of large sizes and lower query efficiency than RMI1.

To address these issues, we aim to save index build times by
leveraging pre-trained models to avoid training from scratch.
This solution is inspired by domain adaptation [5]. Given a
model MS trained on a known (source) dataset DS , domain
adaptation reuses MS for a new (target) dataset DT by fine-
tuning MS over DT (see Fig. 1a). This avoids the expensive
training of a new model on DT from scratch.

2: Get model

1: Measure similarity

3: Fine tune

Train from scratch

(a) Pre-training: Model M1 to M4 are pre-trained on known datasets D1

to D4, respectively. Existing solutions train a new model M on DT from
scratch. We fine-tune a pre-trained model M2 as MFT

2 to index DT .
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(b) The CDFs of four known datasets
and their trained models.
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(c) The CDF of DT and models M,
M2, and MFT

2 .

Fig. 1: Our pre-training and fine-tuning based approach.

For example, in Fig. 1a, there are four known (e.g., synthetic
or historical) datasets D1 to D4 and we train a model over each
one. We call the resultant models (i.e.,M1 toM4) pre-trained
models. If we train model M over DT from scratch, the
training cost is high. Instead, to save training time, we select
M2 as the model to index DT because D2 is the most similar
to DT among the four datasets. Subsequently, Fig. 1b shows
the CDFs of the four known datasets and their corresponding
models. Fig. 1c shows thatM fits DT better thanM2 (which
is the best fit among the four pre-trained models), while after

1 https://learnedsystems.github.io/SOSDLeaderboard/leaderboard/

https://learnedsystems.github.io/SOSDLeaderboard/leaderboard/


fine-tuning, the fine-tuned model MFT
2 almost perfectly fits

DT . In addition, the cost of selecting and fine-tuning model
M2 is substantially cheaper than training M.

A key requirement for successful adaptation of MS to DT

is that DS and DT should have similar distributions [6], [7].
Otherwise,MS may yield large errors on DT . This motivates
us to generate synthetic datasets to cover a wide range of
different distributions and pre-train reusable models on such
datasets. The next question is then how to select a pre-trained
model for DT , i.e., how to measure the dataset similarity.

Our dataset generation process aims to simulate as many
different CDFs as possible. We propose an efficient dataset
generation method that takes a CDF distance threshold ϵ and
a dataset cardinality n as the input, and it outputs a set of
synthetic datasets. Then, we train a model MS over every
synthetic dataset DS . To measure the similarity between two
datasets, we use a fast implementation of the earth mover’s
distance (EMD) [8]. When given a new dataset DT , to reuse
a pre-trained model, we measure the EMD between DT and
all the synthetic datasets. We select a model MS where DS

and DT have the highest similarity (smallest EMD). Then, we
fine-tune MS over DT to better fit the data distribution.

To showcase the applicability of our model reuse technique,
we integrate it into RMI [1]—a learned index that displays
state-of-the-art performance in key lookup speeds [9]. We
show that model reuse and fine-tuning can significantly reduce
the training time of the sub-models in RMI.

In summary, our key contributions are:
(1) We propose a model reuse and fine-tuning technique to

accelerate index building and key lookup. The reused models
are trained over synthetic datasets, which are generated based
on a heuristic method.

(2) To reuse the pre-trained models, we use the earth
mover’s distance to measure the similarity between the target
dataset DT and all the synthetic datasets.

(3) Extensive experiments on synthetic and real datasets
show that model reuse and fine-tuning can accelerate the
building of learned indices by 30.4% and improve lookup
efficiency by up to 24.4% on real datasets and 22.5% on
skewed synthetic datasets.

II. RELATED WORK

A learned index [1], [3], [4], [10]–[18] learns a mapping
from a search key to the storage address of a data record
with a machine learning model. Due to limits on the flexibility
of a single model, existing learned indices such as RMI [1]
build a hierarchy of models to index large datasets. The
idea is similar to that of traditional hierarchical indices: top-
level models predict partitions of the data records (i.e., the
lower-level model in which a record is indexed), while leaf-
level models predict the storage locations. The training of a
hierarchical learned index can be very expensive, especially
when neural networks are used. Follow-up studies aim to
bound the prediction error of the learned model. For example,
PGM [3] builds a hierarchical learned index bottom up, with a
worst-case error bound ϵ on every learned model [19]. RS [4]

addresses the training cost problem by training with just a
single pass, but it exhibits subpar key-lookup performance
compared to state-of-the-art learned indices such as RMI.
PLEX [20] improves the robustness of RS and simplifies the
parametrization of the radix layer.

A technique related to learning indices is quantile estima-
tion, where quantiles are cut points that partition the data
domain into disjoint equal-sized intervals. A search key can be
located by first locating the partition to which it belongs using
the quantiles (e.g., with a binary search) and then performing
a search within the partition. Hist-tree [21] integrates such
an idea into a tree structure where each node represents a
histogram, which partitions a data range into a fixed number
of equal-width bins. A learned index can also be thought of
as a learned mapping from a search key p.key to a partition
[M(p.key)− errl,M(p.key) + erru], while it does not need
to store or search using the quantiles.

Our proposed technique is motivated by domain adaptation
– a technique that uses a pre-trained source model MS over
source datasetDS , and it fine-tunesMS over target datasetDT

such thatMS can be used to perform inference on domain DT .
Typically, DT has limited data records, which is hard to train,
while DS is an abundant dataset. Training MS is costly but
MS can well represent DS . In addition, domain adaptation is
limited by how similar the source and target tasks are [22]. In
our work, we train a set of models based on very small datasets
which can exaggerate the similarity. We fine-tune the models
over large datasets, which leads to better initial performance
and faster overall training convergence.

Since the key idea of a learned index is learning the
CDF [1], we will be using the CDF to measure the similarity
between two tasks. The Kolmogorov–Smirnov (KS) test uses
a similarity measurement which finds the largest absolute dif-
ference between two empirical CDFs evaluated at any record.
It takes O(n) time to compute, assuming two datasets each
with n sorted records. Another measurement is the EMD [8],
also known as the first Wasserstein distance. The EMD can
also be shown to be equal to the area between two empirical
CDFs. The cost of computing EMD on one-dimension data
is also O(n). In this paper, we choose EMD because KS
measures the maximum absolute difference between the CDFs,
which is more sensitive to local deformations than EMD
(which calculates the average difference). Furthermore, we
approximate the CDF with a histogram and use EMD to
measure this similarity to reduce the computational cost.

III. MODEL REUSE AND FINE-TUNING

We first present an overview of our model reuse tech-
nique in Section III-A. We then detail its key components,
including dataset similarity measurement in Section III-B,
synthetic dataset generation in Section III-C, model adaptation
in Section III-D, and fine-tuning in Section III-E.

A. Solution Overview

Fig. 2 depicts the overall workflow of our proposed
solution. First, we propose a heuristic method to generate
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Fig. 2: An overview of dataset generation, model pre-training, and index building. For model reuse and fine-tuning, we use
the similarity comparison between D2 and D0,0 as an example. Then, we fine-tune model M2 after adaption, which derives
MFT

2 . Here, DT = D0,0 = D1,0 ∪D1,1, i.e., DT is D0,0, while D0,0 is separated into D1,0 and D1,1. Any generated synthetic
dataset is much smaller than the input datasets in the index building procedure, i.e., Di ≪ Dj,k.

synthetic datasets (Step 1). After acquiring a set of synthetic
datasets Lsyn, we prepare the pre-trained models Lpre. Each
pre-trained model Lpre[i] is trained over a synthetic dataset
Lsyn[i] (Step 2). The preparation process is a one-off work and
Lsyn and Lpre can be efficiently loaded for index building.

For index (e.g., RMI [1]) building (Step 3), Algorithm 1
summarizes our procedure. The algorithm scans all the syn-
thetic datasets (line 2) and computes the distance (dissimilar-
ity) between DT and each synthetic dataset Lsyn[i] (line 3), to
find the dataset DS that has the smallest distance to DT (lines 4
and 5). After finding the optimal dataset DS and model MS ,
we adapt (i.e., to fit the data domain) and fine-tuneMS based
on DS and DT to obtain MFT

S (lines 6 and 7). Finally, we
compute the error range of MFT

S on DT to bound the index
lookup range (line 8) and return MFT

S afterwards (line 9).

Algorithm 1: Model Reuse and Fine-Tuning
Input: DT , Lsyn, Lpre

Output: MFT
S

1 distmin ←MAX INT ;
2 for i ∈ [1, Lsyn.size()] do
3 dist← cal_distance(Lsyn[i],DT );
4 if dist < distmin then
5 DS ← Lsyn[i], MS ← Lpre[i], distmin ← dist;

6 MFT
S ← adapt_model(MS ,DS ,DT );

7 MFT
S ← fine_tune(MFT

S ,DT );
8 MFT

S .errors←MFT
S .calc_err(DT );

9 return MFT
S ;

B. Dataset Similarity Measurement

A modelMS learns a CDF of dataset DS . To reuseMS on
DT , it is important that the CDFs of DS and DT are similar.
We thus define the distance by the EMD based on the CDFs.

Definition 1 (Similarity between two datasets). Given two
datasets DS and DT , their similarity is defined by the area
between their empirical CDFs:

dist(DS ,DT ) =

∫ ∞

−∞
|cdfS(x)− cdfT (x)|dx (1)

However, directly using EMD in our work has two practical
issues: 1) The data ranges of DS and DT can be different,
which will impact the accuracy of EMD; 2) The computation
cost of EMD is linear to the dataset size n, i.e., O(n), which
can affect index build times for larger datasets.

To address these issues, we observe that the similarity
measurement is used to choose a pre-trained model, without
stringent requirements for high accuracy. Thus, we propose a
fast approximation of the similarity metric using relative fre-
quency histograms (“histograms” for short), which discretize
the data domain into m bins and record relative data frequen-
cies (i.e., percentages) of each bin. A histogram is a discrete
approximation of the probability density function (PDF) of a
dataset. We use it to compute approximations of the CDFs and
their distance, denoted by dist(DS ,DT ).

To generate the histogram, all the data keys are normalized
by min-max normalization, such that bin i contains keys in
the range ( i−1

m , i
m ]. To compute dist(DS ,DT ), we first

compute the histograms of DS and DT , denoted by HS and
HT . We then go through each bin of HS and HT , add
up the probabilities at the bins (to approximate cumulative
probabilities of the CDFs), and record the maximum difference
in the accumulated probabilities of DS and DT .

Algorithm 2 summarizes the computation, where the input
histograms HS and HT each has m (a system parameter) bins.
We use HS [i] and HT [i] to denote the i-th bins and their
relative frequencies. The sum of the probabilities of the first
i bins of HS and HT are denoted by PS and PT , i.e., PS =∑i

j=1 HS [j] and PT =
∑i

j=1 HT [j].

Algorithm 2: Approximate EMD
Input: HS , HT

Output: dist
1 dist← 0, PS ← 0, PT ← 0;
2 for i ∈ [1,m] do
3 PS ← PS +HS [i], PT ← PT +HT [i];
4 dist← dist+ |PS − PT | · 1

m
;

5 return dist;



The algorithm computes dist, i.e., an approximation of
dist(DS ,DT ), by looping through the bins (lines 2 to 4).
In the i-th iteration (i ∈ [0,m− 1]), it computes HS [i] + PS .
This is the approximate cdfS(x) for any x ∈ ( i−1

m , i
m ] (in our

synthetic datasets, x ∈ [0, 1]), because PS has accumulated
the probabilities for x ≤ i−1

m while HS [i] further adds
the probability for x ∈ ( i−1

m , i
m ]. Meanwhile, PT is the

approximate cdfT (x) for any x ∈ ( i−1
m , i

m ]. Thus, we use
|PS−PT | and |PS−PT | · 1m to approximate the CDF distance
and the difference in the area of bin i, respectively.

Using histograms reduces the similarity computation time to
O(log |DT |+m), i.e., O(log |DT |) time for HT computation
and O(m) time for Algorithm 2. Histogram HS is pre-
computed since DS is known. Its cost is omitted here.

C. Synthetic Dataset Generation

We aim to generate a set of datasets that can represent any
given real dataset with a high similarity. Since it is difficult to
determine the position for every single data record in a dataset
with large cardinality n, we again approximate the probability
density of a dataset by a histogram such that the CDF can
be seen as an accumulation of the bins. Then, we can control
CDF generation by controlling the number of bins.
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CDFs of synthetic datasets (ϵ = 0.2)
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Fig. 3: Examples of the CDFs of synthetic dataset generation
and how to approximate real datasets. In (b), the solid lines
(e.g., book) are CDFs of real datasets and the dashed lines
(e.g., book sync) are those of synthetic datasets.

To limit the bin value combinations and hence the number
of CDFs (synthetic datasets) generated, we use a boundary
value ϵ which limits the maximal bin size and limit the
probability value of each bin to be within {0, ϵ/2, ϵ}. We
use m = ⌈2/ϵ⌉ bins in the histogram heuristically. When a
target dataset DT is matched by a synthetic dataset, their CDF
similarity may be within ϵ/2 rather than ϵ, which improves the
query performance. Our total number of histograms generated
is:

∑m
i=0(C

i
m · C

⌊(1−iϵ)/(ϵ/2)⌋
m−i ), where the two combinatorial

terms represent the numbers of bins with probability values
ϵ and ϵ/2, respectively. Once a histogram is created, we
generate a synthetic dataset of n key values (n = 100 in our
experiments) based on the histogram, where the data range is
[0, 1], and random key values are generated for each bin.

As shown in Fig. 3a, after the generation of Lsyn, all CDFs
lie in a [0, 1]× [0, 1] space. Any CDF can be seen as a curve
that starts at (0, 0) and travels to (1, 1) in a non-decreasing
manner (in the CDF value dimension). We discretize this space
with a grid, where each row has a height of ϵ (ϵ = 0.2 in the

Algorithm 3: Synthetic Dataset Generation
Input: ϵ, n
Output: Lsyn

1 m← ⌈2/ϵ⌉;
2 binh ← {0, ϵ/2, ϵ};
3 SetH ← histograms with m bins and heights in binh;
4 for H ∈ SetH do
5 D ← {} ;
6 for i ∈ [0,m− 1] do
7 Randomly generate H[i] · n records in range

( i
m , i+1

m ] for D;

8 Lsyn.add(D);
9 return Lsyn;
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Fig. 4: CDFs of generated synthetic datasets

figure), and each column has a width of ⌈1/ϵ⌉. Consider the
set L of polylines each starting from (0, 0) and traveling to
(1, 1) via the grid vertices in a non-decreasing manner (in the
CDF value dimension, e.g., the colored lines). In Fig. 3b for
all the three CDFs of real datasets, there is a polyline l ∈ L
such that the distance between l and the CDF is bounded
by ϵ = 0.2. However, our synthetic datasets will not cover
extremely skewed CDFs (e.g., the black polylines in Fig. 3a).

This procedure is shown to be effective and efficient empiri-
cally. We summarize the generation procedure in Algorithm 3.
In Fig. 4, we present 12 generated CDFs when ϵ = 0.5.

D. Model adaptation

When model MS pre-trained on DS is selected, we need
to adapt MS based on the data domains of DS and DT . This
is because MS will not work properly on a domain over
which it was not trained, even if the CDFs of DS and DT

share a similar shape. Let the data ranges of DS and DT be
[xs

S , x
e
S ] and [xs

T , x
e
T ], and their data storage position ranges

be [ysS , y
e
S ] and [ysT , y

e
T ], respectively. Model MS is trained

to take a search key in [xs
S , x

e
S ] as the input and predict

a storage position in [ysS , y
e
S ]. Here, we assume that MS

predicts the storage position of record p directly rather than
its rank (or percentile), i.e., p.addr ≈ MS(p.key) (instead
of MS(p.key) · |DS | as shown in Section I). This simplifies
the discussion but does not impact our key findings. To adapt
MS for DT , we take a search key in [xs

T , x
e
T ], map it into

[xs
S , x

e
S ], and feed the mapped value into MS for prediction.

The predicted output is mapped back into [ysT , y
e
T ] for DT .



Let S∆x =
xe
S−xs

S

xe
T−xs

T
and S∆y =

ye
T−ys

T

ye
S−ys

S
. The input mapping

is performed by a linear transformation Tin(x) = a1 · x + b1
where a1 = S∆x and b1 = xs

S − xs
T · S∆x. This is an affine

transformation that maps the data range (i.e., Tin(xs
T ) = xs

S

and Tin(xe
T ) = xe

S) without changing the distribution. Simi-
larly, the output mapping is done by Tout(y) = a2 · y + b2
where a2 = S∆y and b2 = ysT − ysS · S∆y .

E. Fine-Tuning

After model reuse and model adaptation, MS is able to
index DT . However, without fine-tuning, the loss may still
be high. This is because, while the data distributions are
similar in shape, they are not identical. For fine-tuning, we
consider both neural networks and linear models. We use θ to
represent the parameters of MS and θ(t) denotes the param-
eters at epoch t during fine-tuning. We use f(DT .key, θ(t))
to represent the prediction result of MS on DT . Thus, the
loss function L(θ), which is an L2 loss, can be written as:
L(θ) = ||f(DT .key, θ)−DT .addr||2.
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Fig. 5: Model adaptation and fine-tuning, where MFT
S − i is

the ith epoch of fine-tuning (MFT
S − 0 equals to MS).

Before fine-tuning, MS is trained over DS such that we
denote parameters of MS as θ(0) = θS . When we fine-tune
MS , we use gradient descent (GD) with learning rate η and
we update the parameters as: θ(t+1) = θ(t)−η ∂L(θ(t))

∂θ(t) , where
t denotes the fine-tuning iteration number. In Fig. 5, the inner
figure shows a modelMS selected for DT . We first adapt the
model MS from the key range of DS to DT as MFT

S . Then,
we fine-tune MFT

S with 4 epochs to better fit DT .

IV. EXPERIMENTS

A. Experimental Setup

The original implementation of RMI [1] is based on neural
networks. However, linear models have lower build costs,
which can accelerate both the index build time and lookup
time. Thus, we use linear models in the experiments, which
are implemented using Scikit-learn. All experiments are per-
formed on a 64-bit machine with a 3.60 GHz Intel i9 CPU,
RTX 2080Ti GPU, 64 GB RAM, and a 1 TB hard disk drive.

1) Models tested: We compare our approach against both
traditional and learned indices: (1) BTree [23] – a C++ based
in-memory B+-tree, (2) RMI [1] – the recursive model index
using linear models, (3) PGM [3] – a piecewise geomet-
ric model index, (4) RS [4] – a single-pass learned index,
(5) ALEX [10] – an updatable adaptive learned index, and
(6) LIPP [24] – an updatable learned index that yields precise
positions of the search keys.

Proposed models. We evaluate the following adapted mod-
els equipped with our index building techniques: (1) RMI-MR2

– RMI enhanced with model reuse (but no fine-tuning), and
(2) RMI-MR-FT2 – RMI-MR with model fine-tuning.

2) Implementation details: The experimental setup follows
that of the SOSD benchmark [9].

We summarize the number of synthetic datasets (each with
n = 100) and the time to pre-train models on them in Table I.
When ϵ is smaller than 0.2, the number of bins (i.e., ⌈2/ϵ⌉)
is getting large such that the number of synthetic datasets
explodes. Thus, ϵ = 0.2 is the minimum value that we can use.
To balance the computation cost and the fitness of model reuse,
we use ϵ = 0.3 as the default value in the later experiments.
The pre-trained models and synthetic datasets can be loaded
in memory within a second (less than 1 MB in size for linear
models); and the total model comparison time to build an index
in any of the experiments is also within a second.

For all the baselines, we use their published source code
and default configurations. Following the SOSD benchmark,
the BTree is built based on sampling data records from an
input dataset, where the sampling rate varies from 1 to 2−16.
For RMI, we re-implement it using C++ and extend the
implementation to integrate model reuse. For fine-tuning, the
learning rate is 0.01 and we sample data records with a
sampling rate of 0.02. For EMD calculation, we set the number
of bins to be m = 10 for each histogram.

TABLE I: Summary of Synthetic Datasets

ϵ 0.2 0.3 0.4 0.5
Number of bins (m) 10 7 5 4
Number of datasets 8,953 987 95 19
Model training time (s) 839.5 63.5 8.8 2.1

3) Datasets: Following SOSD, we use four real datasets:
amzn (default) – an Amazon book popularity dataset, face
– a Facebook user ID dataset, osm – an OpenStreetMap cell
ID dataset, and wiki – a Wikipedia edit timestamp dataset.
We further generate skewed datasets from uniform data by
raising a key value x to its powers xα (α = 3, 5, 7, 9),
following previous works [25], [26]. Each dataset contains 200
million unsigned 64-bit integer keys (1.6 GB in size).

4) Performance metrics: For both real and synthetic
datasets, we follow the pareto analysis in SOSD [2], which
has ten configurations (i.e., different hyperparameter settings)
ranging from minimum to maximum size for each index. For
RMI, PGM, and RS, the hyperparameter is the number of mod-
els, the threshold of the error bound, and the number of radix
bits, respectively. For BTree and ALEX, the hyperparameter
is the number of sampled data records used to build the index.
LIPP can only be built on the full datasets and hence cannot
support the pareto analysis using sampled subsets. Thus, only
one data point is recorded for it in each result figure. The
SOSD benchmark queries over 10 million sampled keys to
show the average lookup (i.e., a query key is in the indexed
data) time as the index build time and index size change.

2 https://anonymous.4open.science/r/MR FT on SOSD-7C1B

https://anonymous.4open.science/r/MR_FT_on_SOSD-7C1B


B. Results

1) Index size and lookup time over real datasets: Fig. 6
shows that the query efficiency of all learning-based indices is
improved as the index size increases. This is because querying
over learned indices uses model predictions and then a binary
search. A larger number of models can partition the data range
into smaller segments, which leads to a smaller search range
and decreases the cost of binary search. For BTree, a larger
index size means more data records are sampled to build the
index, which leads to a trade-off between the tree height and
the search range of a leaf node in the tree. Thus, as the index
size increases, we first see a drop in lookup time, and then a
rise when the index size is larger than about 100 MB.

Under similar index sizes, RMI shows better query perfor-
mance than ALEX, PGM, and RS in most cases except for
osm where RS overlaps with RMI in some cases, which is
consistent with observations from the SOSD benchmark. RMI-
MR and RMI-MR-FT further show slightly better lookup per-
formance than RMI. For example, on amzn the improvement
by model reuse is up to 20.1% (147 ns vs. 184 ns) and 24.4%
(139 ns vs. 184 ns) with further fine-tuning when the index
size is 256 MB.
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Fig. 6: Index size vs. lookup time over real datasets (LIPP
cannot be used on wiki)

2) Index build time and lookup time over real datasets: In
Fig. 7, we see that RMI-MR dominates RMI in index build
times and query efficiency, especially on the amzn dataset,
where there is a 30.3% (2.29 s vs. 3.29 s) reduction in the
index build time. That means, even when RMI trains the linear
models with a one pass strategy [9], we can still improve the
build time through pre-trained models without jeopardising the
query performance. In addition, the query performance can be
further improved by fine-tuning (i.e., RMI-MR-FT) because
we fine-tune the models with a small number of sampled data
records, which brings just a marginal increment in the build
time. PGM is slower in lookup under different index size
settings. Smaller PGM structures have a large search range,
while larger PGM structures have more layers. These lead to
high prediction costs. ALEX has an index structure similar to
BTree such that they share similar lookup performance.
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Fig. 7: Build time vs. lookup time over real datasets

3) Index size and lookup time over skewed datasets: Fig. 8
shows that RMI, RMI-MR, and RMI-MR-FT outperform the
other methods in lookup time when the index size is large. This
is because RMI has just two levels in practice, and the models
in the last level (i.e., the leaf level) fit the skewed data records
well given a large number of models. Like before, RMI-MR
and RMI-MR-FT outperform RMI. For example, when the
skewness parameter α = 3, the gain in lookup time by model
reuse is up to 20.6% (127 ns vs. 160 ns) using an index size of
256 MB. RMI-MR-FT further improves RMI by 22.5% (124
ns vs. 160 ns) in lookup time.
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Fig. 8: Index size vs. lookup time over skew datasets
4) Index build time and lookup time over skewed datasets:

From Fig. 9, we see that RMI-MR significantly outperforms
RMI in both lookup and build times for most cases. The
results are similar to those on real datasets. Besides, adding
fine-tuning (RMI-MR-FT) slightly improves query efficiency
compared to RMI-MR, in the cost of just around 0.1 seconds
extra in build times when α ≤ 7. When α = 9, the fine-tuning
cost increases given larger index sizes, because there are more
models to tune to fit a highly skewed data distribution.
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Fig. 9: Build time vs. lookup time over skew datasets

V. CONCLUSIONS

We proposed to use pre-trained models and fine-tuning for
indexing new datasets to address the building overhead of
learned indices. We proposed a CDF based synthetic dataset
generation method to generate a number of pre-trained models
and use EMD as a similarity metric to select candidate pre-
trained models for our learned index. We demonstrated the
effectiveness of the proposed techniques by applying them
on the RMI learned indices [1]. Experimental results on both
synthetic and real data show that our model reuse and fine-
tuning techniques can improve the building and the lookup
performance of RMI, reducing the index build time by 30.4%
on real datasets and 22.5% on skewed datasets.

We plan to extend our techniques to multidimensional data,
where the build time for learn indices is typically higher [27].
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