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Dynamic road network optimization has been used for improving traffic flow in an infrequent and localized
manner. The development of intelligent systems and technology provides an opportunity to improve the
frequency and scale of dynamic road network optimization. However, such improvements are hindered by the
high computational complexity of the existing algorithms that generate the optimization plans. We present
a novel solution that integrates machine learning and road network optimization. Our solution consists of
two complementary parts. The first part is an efficient algorithm that uses reinforcement learning to find the
best road network configurations at real time. The second part is a dynamic routing mechanism, which helps
connected vehicles adapt to the change of road networks. Our extensive experimental results demonstrate
that the proposed solution can substantially reduce the average travel time in a variety of scenarios, whilst
being computationally efficient and hence applicable to real-time situations.

CCS Concepts: • Information systems→ Spatial-temporal systems; • Computing methodologies→
Reinforcement learning.

Additional Key Words and Phrases: Spatial Data Management, Autonomous Vehicles, Dynamic Lane-Reversal

ACM Reference Format:
Udesh Gunarathna, Hairuo Xie, Egemen Tanin, Shanika Karunasekera, and Renata Borovica-Gajic. 2018.
Real-Time Road Network Optimization with Coordinated Reinforcement Learning. J. ACM 37, 4, Article 111
(August 2018), 28 pages. https://doi.org/10.1145/1122445.1122456

1 Introduction
Dynamic road network optimization, such as changing the speed limit of roads during peak hours,
has been widely used for improving traffic flow. The optimization is normally performed at a low
frequency, e.g., a few times a day, and in a localizedmanner as the optimizations are normally focused
on a small part of a road network. With the development of intelligent systems and technology, the
real-time data from cameras, counters, inductive loops and smartphones provides an increasingly
precise, real-time and global view of the entire road network. This creates the possibility to improve
the frequency and scale of dynamic road network optimization. However, there exists a challenge
that hinders such improvements, which is the high computational complexity of the algorithms
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for computing road network configurations. Most of the existing algorithms in this area are based
on bi-level/linear programming that aims to find the exact optimal solution to an optimization
problem [8, 14, 32]. Due to the inherently high computational complexity, they are not suitable for
optimizing road network holistically in a large network, e.g., a network of a city, in real time [8].

The advancements in reinforcement learning [27] provide an opportunity to address the compu-
tational challenge. Reinforcement learning has been used for solving many dynamic and real-time
sequential decision-making problems effectively and efficiently. The application of reinforcement
learning has achieved a big success in many fields such as games, robotics, and finance. For road
network optimization, reinforcement learning-based methods have an advantage over traditional
mathematical programming-based methods in that reinforcement learning can generate approx-
imate results that are close to the optimal without sophisticated mathematical models. In other
words, reinforcement learning can be used as a heuristic, which helps improve the efficiency of the
optimization process significantly. Therefore, in this work we are interested in using reinforcement
learning for large-scale optimization of road networks.

We focus on an example type of road network optimization, which is the reversal of traffic lane
directions for balancing the usage of traffic lanes [18]. Such dynamic changes are particularly
important for emerging traffic environments dominated by connected and autonomous vehicles
(CAVs), where vehicles canmore readily alert and adapt to lane changes. The benefit of lane-direction
changes can be shown in the following example, where 20 vehicles are moving north-bound and 2
vehicles are moving south-bound (Figure 1). The original lane configuration assigns 4 lanes for
north-bound traffic and 4 lanes for south-bound traffic (Figure 1a), resulting in the congestion of
north-bound traffic. Figure 1b shows a better lane configuration where the direction of lane E, F
and G are reversed, which leads to a significantly faster north-bound traffic. Our aim is to make
these changes at a larger scale and in a dynamic way.

(a) Traffic before lane-direction change

(b) Traffic after lane-direction change

Fig. 1. The impact of lane-direction
change on traffic flow. There are 20 ve-
hicles moving in the north-bound direc-
tion and 2 vehicles moving in the south-
bound direction.

In our previous work, we proposed Coordinated Learning-
based Lane Allocation (CLLA) [12] for optimizing lane-
directions in dynamic traffic environments. CLLA uses a set of
Reinforcement Learning Agents (RL Agents) that work with an
intelligent transportation system (ITS) to control lane direc-
tions across a road network. An RL Agent uses reinforcement
learning to determine the best lane-direction change for spe-
cific road segments based on the real-time traffic flow on
those road segments. The proposed changes are then sent
to a set of Coordinating Agents that evaluate the global im-
pact of the proposed lane-direction changes based on the
predicted traffic demand, which can be represented by the
number of vehicle routes that pass through specific road seg-
ments. The traffic demand information is maintained in a
data structure called Path Dependency Graph (PDG). After
evaluating the proposed changes, the coordinating agents
approve the changes that have a positive impact on the traffic
efficiency at the global level.
Although CLLA can help improve traffic efficiency to a

certain extent, it has two limitations, which motivates us to
develop a more advanced solution presented in this paper.
The first limitation of CLLA is that the RL Agents are allo-
cated on a per intersection basis, which means the sub-area
controlled by an RL Agent includes all the road segments that
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are connected to a specific intersection. We observe that this implementation reduces the flexibility
of handling different types of intersections. To address this limitation, we develop an extended
version of CLLA, named CLLA+, which reduces the size of the area controlled by an RL Agent
from CLLA. Specifically, we allocate RL Agents on a per road segment basis which allows decision
making at a more granular level. As a result, the RL Agent is able to assign better lane-direction
configurations that further reduce the travel time of vehicles. The second limitation of CLLA is that
it does not consider the impact of dynamic lane-direction changes on the quality of vehicle routes.
The change of lane directions can lead to the change of traffic conditions. The original route plan
of vehicles may not suit the new conditions, which can at times result in less optimal travel times
[5]. This limitation also applies to other existing solutions. To address this problem, we develop
a routing mechanism, named lane-configuration aware routing, to approximate the optimal
traffic assignment when both lane-configuration and traffic conditions change in real-time. The
routing mechanism periodically computes the shortest path based on the latest lane configurations
and traffic conditions. Leveraging CLLA+ and the lane-configuration aware routing, we propose a
complete road network optimization solution, where CLLA+ optimizes lane configurations and the
routing mechanism optimizes vehicle routes.

We evaluate the effectiveness of our proposed road network optimization solution in a vast variety
of traffic scenarios using microscopic simulations. The proposed solution is able to substantially
reduce the travel time in all the simulated traffic scenarios. For example, in the experiments carried
out using the Manhattan road network with real traffic data, the proposed solution achieves a 8%
travel time reduction compared with the baseline solution. Note that such levels of traffic flow
improvement are seen as a significant improvement in Traffic Engineering terms (and should not
be confused with orders of magnitude gain in computation time that is expected and common in
Computer Science [6]).

Our contributions can be summarized as follows: 1. We formalize the real-time lane-direction op-
timization problem in road networks. 2. We introduce CLLA+, a coordinated, scalable, reinforcement
learning-based algorithm to optimize lane directions at a highly granular level. 3. We introduce a
real-time lane-configuration aware traffic routing mechanism to compute the fastest routes under
dynamic lane-configurations. 4. We propose a complete road network optimization solution that
combines CLLA+ with lane-configuration aware routing for real-time large-scale road network
optimization. 5. We present an extensive experimental evaluation of the road network optimization
solution and provide insights into how dynamic lane-direction allocation can influence the traffic.
2 Related Work
2.1 Learning-based Traffic Optimization
A majority of the existing traffic optimization methods are based on traffic flow optimization with
linear programming [11, 17]. These methods are effective if traffic demand and congestion levels
are relatively static. When there is a significant change in the network, the optimization solutions
need to be re-computed from scratch. Due to the high computational complexity of finding an
optimal solution, these methods are not suitable for highly dynamic traffic environments where
real-time traffic information should be considered in the optimization process.
With the rise of reinforcement learning [26], a new generation of traffic optimization methods

have emerged [13, 28]. For example, Arel et al. show that a multi-agent system can optimize the
timing of adaptive traffic lights based on reinforcement learning [2]. In reinforcement learning, an
agent can find the rules to achieve an objective by repeatedly interacting with an environment.
The interactive process can be modelled as a finite Markov Decision Process, which requires a
set of states 𝑆 and a set of actions 𝐴 per state. Given a state 𝑠 of the environment, the agent takes
an action 𝑎. As the result of the action, the environment state may change to 𝑠 ′ with a reward
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𝑟 . The agent then decides on the next action in order to maximize the reward in the next round.
Reinforcement learning-based approaches can suggest the best actions for traffic optimization
given a combination of network states, such as the queue size at intersections [2]. They have an
advantage over linear programming-based approaches, since if trained well, they can optimize
traffic in a highly dynamic network. In other words, there is no need to re-train the agent when
there is a change in the network. Different to the aforementioned approaches, our solution uses
reinforcement learning for optimizing lane-directions.

A common problem with reinforcement learning is that the state space can grow exponentially
when the dimensionality of the state space grows linearly. The fast growth of the state space can
make reinforcement learning unsuitable for large scale deployments. This problem is known as the
curse of dimensionality [3]. A common way to mitigate the problem in traffic optimization is by
partitioning the road network into small sub-areas and using different learning agents to optimize
for different sub-areas. This approach has been used for dynamic traffic signal control [10]. We
apply this approach to optimize citywide traffic at real time.
2.2 Lane Direction Optimization
An important type of road network optimization is focused on lane-direction configurations.
Dynamic lane-direction changes can be an effective way to improve traffic efficiency [16]. However,
existing approaches for optimizing lane-directions are based on linear programming [8, 14, 32],
which are unsuitable for dynamic traffic environments due to their high computational complexity.
For example, Chu et al. use linear programming to make lane-allocation plans by considering the
schedule of CAVs [8]. Their experiments show that the total travel time can be reduced. However,
the computational time grows exponentially when the number of vehicles grows linearly, which
can make the approach unsuitable for highly dynamic traffic environments. The high computational
costs are also inherent to other approaches [14, 32]. Furthermore, all these approaches assume
that the exact knowledge of traffic demand over the time horizon is known beforehand, which
does not hold when traffic demand is stochastic [19]. On the contrary, our proposed approach
CLLA+ is lightweight and can adapt to highly dynamic situations based on reinforcement learning.
The reinforcement learning agents can find effective lane-direction changes for individual road
segments even when traffic demand changes dramatically.
Some existing approaches can work with real-time data where traffic demand is not known a

priori, but do not focus on network-level lane allocations. For example, Ampountolas et al. [1]
discuss lane allocation at the road segment level using an expressway. Mitrovic et al. [21] develop
a solution to compute lane allocation of road segments at an intersection-level. To the best of our
knowledge, we are the first to propose an efficient lane-direction allocation solution based on real-time
traffic information at the road network level.
2.3 Traffic Assignment
Traffic assignment concerns the allocation of vehicle routes. There are two major traffic assignment
paradigms namely system optimal and user equilibrium [24]. The objective of the system optimal
traffic assignment is to minimize the total travel time of all vehicles, whereas the user equilibrium
traffic assignment refers to assigning routes to vehicles so that no vehicle can gain a better travel
time by switching to an alternate route. Some existing traffic optimization solutions are based on
user equilibrium traffic assignment along with lane-direction allocations [14, 32]. There is also
research on system optimal traffic assignment along with lane-direction allocations [19].
To compute both types of traffic assignments, traffic information for the entire time horizon

is needed. Unfortunately, in real-time lane-allocation, such information is not available. User
equilibrium traffic assignment however can be approximated by dynamically recomputing the
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shortest paths (i.e., traffic assignment) at regular time intervals [7]. In this paper, we employ a
similar approach in lane-configuration aware traffic assignment.
3 Problem Definition
A road network can be represented as a graph 𝐺 (𝑉 , 𝐸), where each edge 𝑒 ∈ 𝐸 represents a road
segment and each vertex 𝑣 ∈ 𝑉 represents a start/end point of a road segment.

Definition 1: The lane configuration of an edge 𝑒 ∈ 𝐸, 𝑙𝑐𝑒 , contains two numbers, each of which
is the number of lanes in a specific direction on the edge. The sum of the two numbers is always
equal to the total number of lanes on the edge.
Definition 2: The dynamic lane configuration of an edge 𝑒 ∈ 𝐸 at time 𝑡 , 𝑙𝑐𝑒 (𝑡), is the lane

configuration at the time point.
Definition 3: A dynamic road network configuration at time 𝑡 can be represented as a graph

𝐺𝑡 (𝑉 , 𝐸), with dynamic lane configuration 𝑙𝑐𝑒 (𝑡) applied to all the edges.
Definition 4: All the vehicles in the road network 𝐺 (𝑉 , 𝐸) at time 𝑡 that are yet to finish their

route are represented as a set𝑈𝑡 . The total number of vehicles in the road network at time 𝑡 , 𝑛(𝑡)
(= |𝑈𝑡 |), is equal to the size of the set𝑈𝑡 .
Definition 5: The estimated travel cost of a vehicle 𝑖 ∈ 𝑈𝑡 , 𝐸𝑇𝐶𝑖 (𝑡), is the estimated travel time

that the vehicle takes to move from its source to its destination, which is computed with respect to
the dynamic road network configuration 𝐺𝑡 (𝑉 , 𝐸) at time 𝑡 .
Definition 6: The actual travel cost of a vehicle 𝑖 , 𝐴𝑇𝐶𝑖 , is the actual travel time taken by the

vehicle to move from its source to its destination. The actual travel time can be affected by many
factors, such as the waiting time at intersections and traffic congestion.

Definition 7: The actual total travel cost of the entire network, 𝐴𝑇𝑇𝐶 , is the sum of the actual
travel costs of all the vehicles. That is, 𝐴𝑇𝑇𝐶 =

∑𝑁
𝑖=1𝐴𝑇𝐶𝑖 , where 𝑁 is the total number of vehicles

that existed in the road network.
Problem Statement: Given a set of vehicles 𝑈𝑡 at time 𝑡 , where each vehicle 𝑖 ∈ 𝑈𝑡 has an

estimated travel time 𝐸𝑇𝐶𝑖 (𝑡) and the road network configuration 𝐺𝑡−1 (𝑉 , 𝐸) from time 𝑡 − 1, find
the new configuration 𝐺𝑡 (𝑉 , 𝐸) by computing dynamic lane configuration (𝑙𝑐𝑒 (𝑡)) for all the edges
of 𝐸 such that the actual total travel cost 𝐴𝑇𝑇𝐶 is minimized.
4 Lane-Configuration based Road Network Optimization
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Fig. 2. The CLLA+’s architecture which consists of two
layers. The Path Dependency Graph is shown as PDG.

A complete solution to the aforementioned op-
timization problem needs to have two parts,
a real-time lane-configuration optimization
method and a real-time rerouting mechanism.
The former part optimizes for road infrastruc-
ture while the later part optimizes for individ-
ual CAVs. There is a strong interplay between
the two parts. When lane-configuration of the
road network changes, the original route of
CAVs may not work well because future traf-
fic conditions can be impacted by the lane-
configuration changes. Consequently, CAVs
may need to reroute in order to minimize their
own travel time under the new traffic condi-
tions. On the other hand, the rerouting of CAVs
can also change future traffic conditions. To
adapt to the new traffic conditions, lane-configurations may need to be updated. Our complete
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Algorithm 1: CLLA+
Parameter :𝑡𝑖 , time interval between two coordinating operations(Assignment interval)
Parameter :Local Lane-direction Changes (𝐿𝐿𝐶) proposed by the RL Agent
Parameter :𝐺 , road network
Parameter :Coordinated Lane-direction Changes (𝐶𝐿𝐶) by the Coordinating Agents

1 𝑡 ← 0, 𝑡𝑠𝑡𝑒𝑝 ← 0
2 while True do
3 foreach 𝑎𝑔𝑒𝑛𝑡 ∈ 𝑅𝐿 𝐴𝑔𝑒𝑛𝑡𝑠 do
4 get best lane-configuration for the edge 𝑒 (road), 𝑙𝑐𝑒 (𝑡), controlled by the 𝑎𝑔𝑒𝑛𝑡
5 if 𝑙𝑐𝑒 (𝑡) is different to the current configuration of the edge then
6 𝐿𝐿𝐶.𝑖𝑛𝑠𝑒𝑟𝑡 ({𝑒, 𝑙𝑐𝑒 (𝑡)})

7 if 𝑡𝑠𝑡𝑒𝑝 = 𝑡𝑖 then
8 𝐶𝐿𝐶 ← Global Impact Evaluation(𝐿𝐿𝐶)
9 𝐿𝐿𝐶 ← ∅, 𝑡𝑠𝑡𝑒𝑝 ← 0

10 foreach {𝑒, 𝑙𝑐𝑒 (𝑡)} in 𝐶𝐿𝐶 do
11 apply the lane-direction change to 𝑒

12 𝑡 ← 𝑡 + 1
13 𝑡𝑠𝑡𝑒𝑝 ← 𝑡𝑠𝑡𝑒𝑝 + 1

solution consists of the two parts. In this section, we first describe the lane-configuration optimiza-
tion solution (CLLA+), followed by the rerouting mechanism (Lane-configuration Aware Routing)
and then the interplay between the two parts.
4.1 Enhanced Coordinated Learning-based Lane Allocation
Enhanced Coordinated Learning-based Lane Allocation (CLLA+) provides a highly scalable solution
for dynamic lane configuration at the road network level by using two sets of software agents,
Reinforcement Learning (RL) Agents and Coordinating Agents. The architecture of CLLA+ is shown
in Figure 2, where RL Agents work in the bottom layer and Coordinating Agents work in the upper
layer. There is also a data structure named Path Dependency Graph (PDG) in the upper layer. PDG
maintains the predicted traffic flow of the entire road network. It is updated periodically based on
route plan of vehicles, which would be readily accessible to a traffic management system in the era
of CAVs.

Different RL Agents optimize lane-direction configurations for different road segments indepen-
dently. When RL Agents recognize lane-direction changes that are beneficial to the local traffic,
they propose the changes to the Coordinating Agents, which evaluate whether the proposed change
would be beneficial to traffic flow at the global level based on the PDG. The Coordinating Agents
then ask the RL Agents to execute the globally beneficial changes. The Coordinating Agents may
also decide further changes in addition to the proposed changes.
4.1.1 Optimization Procedure

The procedure for optimizing lane-direction configuration is detailed in Algorithm 1. During one
iteration of the algorithm, each RL Agent can propose a lane-direction change at a specific road
segment using the process detailed in Section 4.1.2. The Coordinating Agents evaluate the proposed
changes periodically. When it is time to evaluate the proposed changes, the Coordinating Agents
use the Global Impact Evaluation algorithm (Section 4.1.3) to quantify the conflicts between the
proposed changes and find the globally beneficial changes (Line 8). The coordinated lane-direction
changes are then applied to the road segments (Line 10-11).
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4.1.2 Reinforcement Learning Agent (RL Agent)
In CLLA+, the RL Agents use Q-learning technique [30] to find suitable lane-direction changes

based on real-time traffic conditions. The Q-learning algorithm aims to find a policy that maps a
state to an action. The algorithm relies on an action value function, 𝑄 (𝑠, 𝑎), which computes the
quality of a state-action combination. Q-learning tries to find the optimal policy that leads to the
maximum action value. Q-learning updates the action-value function using an iterative process as
shown in Equation 1 [27].

𝑄 (𝑠𝑡 , 𝑎𝑡 ) ← (1 − 𝛼).𝑄 (𝑠𝑡 , 𝑎𝑡 ) + 𝛼 (𝑟𝑡 + 𝛾 .𝑚𝑎𝑥𝑎𝑄 (𝑠𝑡+1, 𝑎)) (1)

where 𝑠𝑡 is the current state, 𝑎𝑡 is the action taken, 𝑠𝑡+1 is the next state as a result of the action,
𝑚𝑎𝑥𝑎𝑄 (𝑠𝑡+1, 𝑎) is the estimated action value in the next state, value 𝑟𝑡 is an observed reward as
a result of the action at 𝑡 , 𝛼 is a learning rate and 𝛾 is a discount factor. The iterative update of
Equation 1 approximates the optimal action value function 𝑄∗ (𝑠𝑡 , 𝑎𝑡 ) for every state-action pair.
In our previous work [12], an RL Agent controls a set of road segments connected to a specific

intersection. However, allocating RL Agents per intersection basis reduces the flexibility when
there are road segments with a different number of lanes connected to an intersection. In this
extension, RL Agents are allocated per road segment basis. Though this increases the number of
RL Agents, the benefit of the new approach are two-fold. First, it avoids the situation where the
same road is controlled by two RL Agents. So there is no duplicate decision-making for a road
segment. Second, the state-space of an RL Agent is reduced significantly, which can lead to a faster
learning process. The reduced state-space makes CLLA+ more adaptive to dynamic environments.
The states, actions, and rewards used by the RL Agents are defined as follows.

States: First, we denote the two possible directions of a lane as upstream and downstream. Assume
an edge points from vertex 𝑣1 to vertex 𝑣2 and the vertices have identification numbers, we say
that the direction 𝑣1 → 𝑣2 is upstream if 𝑣1 is lower than 𝑣2 or downstream if 𝑣1 is higher than 𝑣2.
An RL Agent works with three types of states as shown below.

1. The first state represents the number of vehicles in the upstream direction of the road segment
at a given time step. To avoid high variances in the measurement of the number of vehicles, the
moving average of the number of vehicles from the last 𝑛 time-steps is used.
2. The second state represents the number of vehicles in the downstream direction of the road

segment. The moving average of the number of vehicles is used.
3. The third state represents the lane configuration of the road segment.
Although it is possible to add other types of states, we find that the combination of these states

works well.
Actions: There are three possible actions which include increasing the number of upstream lanes

by 1, increasing the number of downstream lanes by 1, and keeping the current configuration. When
the number of lanes in one direction is increased, the number of lanes in the opposite direction is
decreased at the same time.
Once an RL Agent executes a lane-direction change action, the effect of the action may not be

reflected on the road segment immediately for road safety reasons. For example, all the vehicles
already travelling in a lane should move away from the lane before the lane can be used by vehicles
traveling from the opposite direction. There is a transition period between the time that a lane-
direction action is taken and the time that vehicles start entering that lane from the opposite
direction. We call this transition period the lane clearing time. This transition period is an important
factor which affects the efficiency of our overall solution as an increase of lane clearing time
increases the total travel time. The impact of this factor is examined in our experiments.

Rewards: We define the reward based on output flow, which is the number of vehicles leaving
a road segment during a specific period. When the output flow is high, more vehicles are able to
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leave a road segment per unit time [14]. A higher output flow at a road segment can lead to a lower
travel time, or a lower travel cost, at the segment. Therefore, based on our objective of minimizing
the total travel cost (Section 3), the reward function is defined as:

𝑅 = −𝑎𝑏𝑠 (
𝑛𝑢𝑝

𝑙𝑐𝑢𝑝
− 𝑛𝑑𝑜𝑤𝑛

𝑙𝑐𝑑𝑜𝑤𝑛

)/
(𝑛𝑢𝑝 + 𝑛𝑑𝑜𝑤𝑛)
(𝑙𝑐𝑢𝑝 + 𝑙𝑐𝑑𝑜𝑤𝑛)

(2)

In this function, 𝑛𝑢𝑝 and 𝑛𝑑𝑜𝑤𝑛 represent the number of upstream vehicles and the number
of downstream vehicles in a road segment. The number of upstream lanes and the number of
downstream lanes are denoted as 𝑙𝑐𝑢𝑝 and 𝑙𝑐𝑑𝑜𝑤𝑛 . The denominator term is used to normalize the
reward function.
Even though the reward function is described in terms of the flow, it helps to reduce the travel

time (as in the objective of the problem definition) on the road segment. The reward balances the
traffic per lane in both directions such that one direction is not congested compared to the other.
Allocating more lanes to the direction with a higher volume of traffic increases the throughput in
that direction allowing a larger number of vehicles to leave the road segment in a unit-time. This
reduces the average time spent by a vehicle in that road segment as more vehicles can leave the
road segment [8].
4.1.3 Coordinating Agent

Given a locally optimized lane-direction change, Coordinating Agents check whether the change
can help improve traffic efficiency in the surrounding areas based on the predicted traffic demand
and the current traffic conditions. If a proposed change is beneficial, it can be actioned. Otherwise,
it is not allowed by CLLA+.

Fig. 3. The vehicles on a road with three road
links, 𝑒1, 𝑒2 and 𝑒3.

The coordinating process considers the predicted
traffic demand at the global level based on the routes
of vehicles. This can be explained with a simple
example shown in Figure 3, where 2 vehicles are
moving from A to D while 4 vehicles are moving in
the opposite direction. In this scenario, the overall
traffic demand would be from right to left. Without
considering the global traffic trend, the RL Agent
for road segment 𝑒1 may propose to increase the number of lanes from A to B because there is
no vehicle in the opposite direction on 𝑒1 now. Although such a lane-direction change would
help reduce the travel time on 𝑒1, it would conflict with the global traffic trend, which can lead to
congestion in the opposite direction. Consequently, increasing the number of lanes from A to B is
not beneficial at the global level and should not be actioned.

Due to the dynamic nature of traffic, especially in the era of CAVswhen road network optimization
can be performed frequently, the Coordinating Agents may not need to consider the full route of
vehicles as the route may change dynamically at real time. The Coordinating Agents can collect
the partial route within a lookup distance. For example, assuming the lookup distance is 10 road
segments, the Coordinating Agents only need to know the next 10 road segments that the vehicles
will pass.

The coordination of lane-direction changes is performed at a certain time interval. The time
between two coordinating operations is called assignment interval, within which the proposed lane-
direction changes and the information about vehicle routes are collected from the road network.
The vehicle route information is fed into a data structure named Path Dependency Graph. Based
on this data structure, the coordinating agents compute the current traffic condition and predict
future traffic condition across the whole road network.
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Path Dependency Graph (PDG): The main responsibility of PDG is to predict the amount of
traffic flow from one road segment to another. In PDG, a vertex corresponds to a road segment. The
flow between two road segments, which may or may not be connected to the same intersection, is
represented as an edge between two vertices. PDG is constructed from a road network as follows.
Let us denote a road network as a graph 𝐺 (𝑉 , 𝐸) where 𝑉 is the set of intersections, and 𝐸 is

the set of road segments. Let us denote 𝑃 as a set of vehicle paths at a given time 𝑡 . A vehicle path
𝑝 ∈ 𝑃 is represented through a set of edges, as following 𝑝 = {𝑒0, 𝑒1, ..., 𝑒𝑛}; 𝑒0, 𝑒1, ..., 𝑒𝑛 ∈ 𝐸, 𝑝 ∈ 𝑃 .
The first edge on the path is the edge of the vehicle at time 𝑡 .

We construct Path Dependency Graph, 𝑃𝐷𝐺 (𝑉 𝑝𝑑𝑔, 𝐸𝑝𝑑𝑔), as a directed graph. Vertices of 𝑃𝐷𝐺
represent the roads in the road network. i.e. edges of road network graph 𝐺 are mapped to vertices
of 𝑃𝐷𝐺 , vice versa. This relationship can be described with a function 𝑓 : 𝑒 ∈ 𝐸 ⇔ 𝑣 ∈ 𝑉 𝑝𝑑𝑔.
In real-world road networks, traffic conditions tend to change with high randomness in a brief

period, but the conditions tend to show a stable trend over an extended period. To make a more
accurate prediction of traffic, PDG maintains several attributes that consider both the current
and historic values. Specifically, such attributes are based on the exponentially weighted moving
average (𝐸𝑊𝑀𝐴) function, which is defined in Equation 3.

Given a time series 𝑠 , the value of 𝑠 in the current time step 𝑡 , 𝑟𝑡 , the EWMA of the series in the
previous step 𝑡 − 1, 𝐸𝑊𝑀𝐴𝑡−1, and a weight 𝜇 between 0 and 1, the EWMA of the series in the
current time step is:

𝐸𝑊𝑀𝐴𝑡 = 𝜇 × 𝑟𝑡 + (1 − 𝜇) × 𝐸𝑊𝑀𝐴𝑡−1 (3)

As shown in Equation 3, EWMA is a recursive function. The EWMA of the current step can be
influenced by the value of earlier steps. The weight 𝜇 controls the level of influence from previous
time steps.

In PDG, a vertex 𝑣 has two types of attributes (note that 𝑣 maps to a road segment).
1. Weighted traffic loads 𝑥𝑢𝑝,𝑣 (𝑡) and 𝑥𝑑𝑜𝑤𝑛,𝑣 (𝑡). These are the EWMA of the number of vehicles

in both upstream and downstream directions at road segment 𝑣 at time step 𝑡 . These two attributes
show the level of traffic flow in two directions. The value of the two attributes can be computed
using the EWMA function described above. For example, assuming that 𝑟𝑡 in Equation 3 is the
number of vehicles in the upstream direction in time step 𝑡 , 𝑥𝑢𝑝,𝑣 (𝑡) can be computed as 𝑥𝑢𝑝,𝑣 (𝑡) =
𝜇 × 𝑟𝑡 + (1 − 𝜇) × 𝑥𝑢𝑝,𝑣 (𝑡 − 1).
2. Lane configuration 𝑙𝑐𝑣 (𝑡): The lane configuration of road 𝑣 at time 𝑡 .
An edge (𝑣1, 𝑣2) in PDG has two attributes, upstream flow (𝑓𝑢𝑝,(𝑣1,𝑣2) (𝑡)) and downstream flow

(𝑓𝑑𝑜𝑤𝑛,(𝑣1,𝑣2) (𝑡)). These edge attributes represent the expected number of vehicles (traffic flow) that
move from one road segment (𝑣1) to another road segment (𝑣2) according to their route plan. Here,
𝑢𝑝 and 𝑑𝑜𝑤𝑛 indicate from which direction (upstream or downstream) traffic flow starts from 𝑣1.
To limit the impact of the variances of traffic flow, the attributes are computed as EWMA of traffic
flow. We believe it is possible to acquire accurate values for these attributes in the era of connected
vehicles, where vehicle route information can be sent to Coordinating Agents from the vehicles
directly or be relayed to the agents through the transportation infrastructure [23]. Based on the
vehicle route information, the EWMA of traffic flow can be computed. For example, assuming 𝑟𝑡 in
Equation 3 is the number of vehicles that are travelling in the upstream direction on road segment
𝑣1 at time 𝑡 and will enter road segment 𝑣2 at a later time, the upstream flow 𝑓𝑢𝑝,(𝑣1,𝑣2) (𝑡) can be
computed as 𝑓𝑢𝑝,(𝑣1,𝑣2) (𝑡) = 𝜇 × 𝑟𝑡 + (1 − 𝜇) × 𝑓𝑢𝑝,(𝑣1,𝑣2) (𝑡 − 1).
At any time step 𝑡 , we construct an edge of 𝑃𝐷𝐺 , denoted as (𝑣1, 𝑣2), between two vertices

(𝑣1, 𝑣2 ∈ 𝑉 𝑝𝑑𝑔), if there is at least one vehicle path that covers the corresponding road segments
of both 𝑣1 and 𝑣2 (note that 𝑣1 is mapped to the current road segment of the vehicle and the road
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segment may not be adjacent to the corresponding segment of 𝑣2). In other words, an edge in PDG
denotes a relationship between a pair of road segments on a vehicle’s path. We construct such an
edge if the edge does not already exist in the PDG. It may not be necessary to consider all the road
segments on vehicles’ routes when updating PDG. This is because the impact of lane-direction
change at a road segment is generally small on road segments that are far away. Due to this reason,
we set an upper limit to the number of road segments in vehicle paths when building PDG. This
limit is set to the aforementioned lookup distance, denoted as 𝑙𝑑 . Only the next 𝑙𝑑 number of road
segments that a vehicle needs to pass through are considered when updating PDG. For a given path
𝑝 , 𝑣1 should be the current edge of the vehicle on the path and 𝑣2 should be any of the remaining
edges on path 𝑝 .

The process of generating a PDG can be explained with the following example. We show a set of
vehicle paths in an example road network (Figure 4a) and the corresponding PDG (Figure 4b). The
road network has 12 roads segments (A to L). The paths of the vehicles are Path 𝛼 , Path 𝛽 and Path
𝛾 . Path 𝛼 passes through 4 edges (A, F, I, J). Path 𝛽 passes through 3 edges (A, F, H). Path 𝛾 passes
through 3 edges (J, I, F). In the corresponding PDG, there are 5 vertices, each of which is mapped to
a road segment with one or more vehicle paths. For each edge in PDG, 𝑓𝑢𝑝 and 𝑓𝑑𝑜𝑤𝑛 are shown in
brackets near the corresponding edge. For simplicity, we set 𝜇 to 1. The lookup distance is set to 3.
The example PDG contains an edge from A to I with (𝑓𝑢𝑝 = 1, 𝑓𝑑𝑜𝑤𝑛 = 0), because the vehicle

in Path 𝛼 will pass A then pass I and Path 𝛼 starts from the upstream direction of A. There is an
edge from A to F with (𝑓𝑢𝑝 = 2, 𝑓𝑑𝑜𝑤𝑛 = 0) because there are two vehicles (Path 𝛼 and 𝛽) that
will go from A to F, starting from the upstream direction of A. There is an edge from J to I with
(𝑓𝑢𝑝 = 0, 𝑓𝑑𝑜𝑤𝑛 = 1), because the vehicle in Path 𝛾 passes from J then passes I starting from the
downstream direction of J. The edge attributes of other edges in Figure 4a can also be explained
similarly. We should note that there is no edge from A to J even though the vehicle in Path 𝛼 goes
from A to J. This is because J is the 4th edge in Path 𝛼 , thus J is not within the lookup distance,
which is 3, from the vehicle’s current edge A.
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(a) A simple road network with three paths
(red, green and blue).
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(b) Path Dependency Graph (PDG) based on
the road network in Figure 4a. Red arrows,
green arrows and blue arrows correspond
to Path 𝛼 , Path 𝛽 and Path 𝛾 in Figure 4a,
respectively.

Fig. 4. Path Dependency Graph example

PDG is similar to the dual graph [31] in terms of how the edges of a primal graph are represented
as vertices in the transformed graph. However the relationship between the edges in PDG is more
complex and based on the current vehicle paths. This is different from the dual graph, where the
edges are constructed if they share a common vertex in the primal graph.
Global Impact Evaluation Algorithm (GIE): The Coordinating Agents use Global Impact

Evaluation Algorithm (see Algorithm 2) to quantify the conflicts between lane-direction changes.
The algorithm takes lane-direction changes that are proposed by the RL Agents as input (𝐿𝐿𝐶). A
lane-direction change in the input consists of a road ID and the configuration of the lane-directions
at the road segment. The coordination is performed as the below steps.
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Algorithm 2: Global Impact Evaluation (GIE)
Input: Local Lane-direction Changes (𝐿𝐿𝐶) proposed by the RL Agent
Input: 𝑡 , current time
Input: 𝑃𝐷𝐺 , Path Dependency Graph
Output: Coordinated Lane-direction Changes (𝐶𝐿𝐶) approved by the Coordinating Agents

1 𝑞 ← ∅; 𝐶𝐿𝐶 ← ∅
2 𝑝𝑓𝑢𝑝,𝑟 , 𝑝 𝑓𝑑𝑜𝑤𝑛,𝑟 ← 0
3 foreach (𝑟, 𝑙𝑐𝑟 (𝑡)) ∈ 𝐿𝐿𝐶 do
4 𝑟𝑜𝑎𝑑𝑠 ← get neighboring road segments for 𝑟 from 𝑃𝐷𝐺

5 foreach 𝑟𝑛𝑒𝑤 ∈ 𝑟𝑜𝑎𝑑𝑠 do
6 if change in 𝑟 affects 𝑟𝑛𝑒𝑤 in upstream then
7 𝑝𝑓𝑢𝑝,𝑟𝑛𝑒𝑤+ = 𝑓𝑢𝑝,(𝑟,𝑟𝑛𝑒𝑤 )
8 else
9 𝑝𝑓𝑑𝑜𝑤𝑛,𝑟𝑛𝑒𝑤+ = 𝑓𝑑𝑜𝑤𝑛,(𝑟,𝑟𝑛𝑒𝑤 )

10 if 𝑟𝑛𝑒𝑤 not in 𝑞 then
11 𝑞.𝑎𝑑𝑑 (𝑟𝑛𝑒𝑤)

12 foreach 𝑟𝑛𝑒𝑤 ∈ 𝑞 do
13 𝑙𝑐𝑟𝑛𝑒𝑤 (𝑡) ← ∅; 𝑖𝑠_𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡 ← 𝐹𝑎𝑙𝑠𝑒;
14 𝑡𝑎𝑟𝑔𝑒𝑡_𝑑𝑖𝑟 ← direction which has higher 𝑝𝑓 value; (up or down)
15 𝑜𝑝𝑝𝑜𝑠𝑒_𝑑𝑖𝑟 ← opposite direction to 𝑡𝑎𝑟𝑔𝑒𝑡_𝑑𝑖𝑟 ; (up or down)
16 if (𝑝 𝑓𝑡𝑎𝑟𝑔𝑒𝑡_𝑑𝑖𝑟,𝑟𝑛𝑒𝑤 > 𝑥𝑜𝑝𝑝𝑜𝑠𝑒_𝑑𝑖𝑟,𝑟𝑛𝑒𝑤 ) then
17 𝑙𝑐𝑟𝑛𝑒𝑤 (𝑡) ← add one lane to 𝑡𝑎𝑟𝑔𝑒𝑡_𝑑𝑖𝑟 direction
18 else
19 set 𝑖𝑠_𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡 to 𝑇𝑟𝑢𝑒
20 if (𝑖𝑠_𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡 == 𝑇𝑟𝑢𝑒) then
21 𝑟𝑛𝑒𝑤 cannot accommodate predicted traffic flows;
22 mark corresponding change in 𝐿𝐿𝐶 as a conflict
23 if 𝑙𝑐𝑟𝑛𝑒𝑤 (𝑡) contains a lane direction change then
24 𝐶𝐿𝐶.𝑎𝑑𝑑 ( [𝑟𝑛𝑒𝑤, 𝑙𝑐𝑟𝑛𝑒𝑤 (𝑡)])

25 foreach (𝑟, 𝑙𝑐𝑟 (𝑡)) ∈ 𝐿𝐿𝐶 do
26 if no conflicts for 𝑟 then
27 𝐶𝐿𝐶.𝑎𝑑𝑑 ( [𝑟, 𝑙𝑐𝑟 (𝑡)])

First, the algorithm finds the road segments that are affected by a proposed lane-direction change
at a road segment (𝑟 ) within the lookup distance. This is done by using PDG’s edges from 𝑟 in
Line 4 (note that 𝑟𝑛𝑒𝑤 is a vertex in PDG). For each affected road segment, the algorithm finds the
predicted traffic flow (𝑝 𝑓 ) using the edge attributes 𝑓𝑢𝑝 and 𝑓𝑑𝑜𝑤𝑛 of PDG (Line 6-9), which maintain
the average flow at a road segment with a proposed lane-direction change to an affected road
segment. If a road segment is affected by multiple proposed changes, the traffic flow relevant to all
the changes is aggregated when computing 𝑝𝑓𝑢𝑝 /𝑝 𝑓𝑑𝑜𝑤𝑛 . Then the algorithm adds the affected road
segments to a queue (Line 11). The queue contains all the road segments affected by the changes
proposed by RL Agents.

In the next step, the algorithm visits each road segment in the queue to determine the appropriate
lane-direction configuration (𝑙𝑐𝑟𝑛𝑒𝑤 (𝑡)) by checking whether the road segment can accommodate
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the predicted traffic flow (𝑝 𝑓 ) using PDG’s 𝑥𝑢𝑝 and 𝑥𝑑𝑜𝑤𝑛 attributes (Line 13-19). Here, 𝑥𝑢𝑝 and
𝑥𝑑𝑜𝑤𝑛 represent the weighted traffic load in a road segment that corresponds to a PDG vertex. The
general rationale behind this part is that the affected road segments, rather than the segments
where the proposed changes would happen, may also need to change lane-direction configurations
to adapt to the change of traffic flow in the near future. But increasing traffic lanes at one direction
may deteriorate traffic condition in the opposite direction if the traffic flow in the opposite direction
is expected to be heavier. Therefore one needs to determine the appropriate lane-direction change
based on the expected traffic flow in both directions. The decision-making process of Line 13-19
can be explained in the following manner. First, we select the direction of road segment 𝑟𝑛𝑒𝑤 , in
which the predicted traffic flow is higher. This direction is denoted as 𝑡𝑎𝑟𝑔𝑒𝑡𝑑𝑖𝑟 . This is the direction
in which we should increase the number of lanes. For example, if the proposed changes will lead to
the increase of both 𝑝𝑓𝑑𝑜𝑤𝑛 and 𝑝𝑓𝑢𝑝 at the same road segment 𝑟𝑛𝑒𝑤 , we set the direction which has
the higher 𝑝 𝑓 value as the 𝑡𝑎𝑟𝑔𝑒𝑡𝑑𝑖𝑟 and the opposite direction as the 𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒𝑑𝑖𝑟 (Line 13-15). If
the predicted flow for the target direction (𝑝𝑓𝑡𝑎𝑟𝑔𝑒𝑡_𝑑𝑖𝑟,𝑟𝑛𝑒𝑤 ) is higher than the opposite direction’s
average traffic flow (𝑥𝑜𝑝𝑝𝑜𝑠𝑒_𝑑𝑖𝑟,𝑟𝑛𝑒𝑤 ) then we register an additional change of lane configuration
(𝑙𝑐𝑟𝑛𝑒𝑤 ) by adding a new lane in the target direction (Line 16-17). Otherwise, if (𝑥𝑜𝑝𝑝𝑜𝑠𝑒_𝑑𝑖𝑟,𝑟𝑛𝑒𝑤 ) is
higher we cannot register a change for 𝑟𝑛𝑒𝑤 because there is a larger flow in the opposite direction.
In such situations, we should not approve the original proposed change at 𝑟 (Line 18-19). In such a
case, we mark it as a conflict by making the variable 𝑖𝑠_𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡 to true. If there is a conflict in an
affected road segment, the algorithm marks the corresponding change proposed by an RL Agent
as a conflict (Line 20-21). Otherwise, the additional lane-direction change for the affected road
segment 𝑟𝑛𝑒𝑤 is added to Coordinated Lane Changes (𝐶𝐿𝐶) (Line 24). At the end of the loop in Line
24, 𝐶𝐿𝐶 contains all the additional changes that need to be made.

In the last step, the algorithm adds each of the original lane-direction changes proposed by the
RL Agents to 𝐶𝐿𝐶 if the change does not involve a conflict (Line 25-27).
Complexity of Coordinating Process: Let us use𝑚 to denote the number of requests from

the RL Agents. The complexity of visiting the relevant road segments is O(𝑚 × 𝑛𝑒𝑏) where 𝑛𝑒𝑏 is
the number of neighboring road segments that connect to a road segment at a road junction. Since
the number of road segments connecting with the same junction is normally a small value, 𝑛𝑒𝑏 can
be seen as a constant value with a given lookup distance (𝑙𝑑 ). Hence the algorithm complexity can
be simplified to O(𝑚). In the worst case, there is a lane-change request for each road segment of
𝐺 (𝑉 , 𝐸), leading to a complexity of O(|𝐸 |).

Example Policy by CLLA+: In this example, we focus on a synthetic intersection with two
roads, AC and BD. Both roads are two-way with 6 lanes. The synthetic network is simulated in
the SMARTS simulator. We present screenshots of the simulation at various stages (Figure 5). In
the screenshots, each vehicle is shown as a colored dot. Red vehicles are stopped, and green ones
are moving at free-flow speed. Vehicles with other colors are moving at speeds between 0 and the
free-flow speed.
At the start of the scenario (the first subfigure), direction AC and direction DB are allocated

with 4 lanes each due to the high demand of traffic in the two directions. Then, the trend of traffic
demand has a sudden change, where many vehicles start to travel in direction CA and BD. The
second subfigure shows the moment of the traffic demand change. We can see that there are still
many vehicles in the AC direction that need to be cleared. After those vehicles are cleared, the RL
framework applies a policy to change the direction of some lanes. As shown in the last subfigure,
we can see that direction CA and BD get 4 lanes each. When the screenshot is taken, the congestion
in direction BD has reduced significantly, demonstrating the positive effect of lane configuration
change.
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Fig. 5. Change of traffic demand and lane directions around an intersection.

4.2 Lane-Configuration Aware Routing
When lane-directions are changed, the travel time on road segments may increase or decrease,
which can affect the choice of the fastest route between two locations. This is the reason that
lane-direction configuration solutions are normally coupled with traffic assignment that optimizes
vehicle routes. As mentioned in Section 2.3, an ideal traffic assignment can reach a system optimal
or a user equilibrium state. Both are difficult to achieve in a highly dynamic traffic environment
due to the high computational complexity of the problem. However, user equilibrium-based traffic
assignment can be approximated by recomputing the fastest path at small time intervals for all the
vehicles whenever traffic conditions are changed [5, 7]. Such incremental route changes typically
yield a similar route choice given by the traditional user equilibrium traffic assignment. Existing
work on lane-direction changes do not consider such frequent rerouting of vehicles. We detail
a lane-configuration aware routing mechanism that allows CAVs to reroute frequently based on
dynamic lane-direction changes.
Dynamic Computation of Fastest Route: As described in Section 2.3, user equilibrium

traffic assignment aims to route vehicles such that no vehicle can gain a shorter travel time by
switching to an alternate route. Traditional user equilibrium-based traffic assignment requires
all the traffic information within the entire time-horizon to be known at the beginning of the
computation. Differently, as CLLA+ works with real-time data, we do not assume that the future
traffic information is available. Thus we cannot compute user equilibrium traffic assignment in a
traditional manner.
In order to compute the fastest path in a dynamic traffic environment, one should be able to

estimate the travel time on a road segment based on the traffic conditions at any time. The well
known Bureau of Public Roads (BPR) function can be used for this purpose [9]. The BPR function
estimates the travel time through a road segment by considering the current traffic flow and the
flow capacity. Note that the travel time on the two directions of a road segment may be different.
For simplicity, in this section, we only consider one direction of a road segment. Equation 4 shows
how to estimate the travel time based on the traffic flow at a road segment.
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𝑇𝑒 (𝑡) = 𝑇𝑓 ,𝑒 × (1 + 𝜁 (
𝐼𝑒 (𝑡)
𝑂𝑒 (𝑡)

)𝛿 ) (4)

In this equation, 𝑇𝑒 (𝑡) is the travel time estimated for road segment 𝑒 (for a specific direction) and
𝑇𝑓 ,𝑒 is the free flow travel time. 𝐼𝑒 (𝑡) is the actual flow attempting to use road segment 𝑒 and 𝑂𝑒 (𝑡)
is flow capacity of road segment 𝑒 at time 𝑡 respectively. We use the standard values for 𝜁 and 𝛿
(0.15 and 4 respectively [9]) in our implementation.

The BPR function can be modified to account for the lane configuration as follows, where the
flow capacity 𝑂𝑡 (𝑒) is expressed as a function of the number of lanes [14].

𝑇𝑒 (𝑡) = 𝑇𝑓 ,𝑒 × (1 + 𝜁 (
𝐼𝑒 (𝑡)

𝑢𝑒 ∗ 𝑙𝑐𝑒 (𝑡)
)𝛿 ) (5)

In this equation, 𝑢𝑒 is the maximum flow capacity of a lane and 𝑙𝑐𝑒 (𝑡) is the number of lanes in
road segment 𝑒 in the considered direction at time 𝑡 .

The modified BPR equation can be used to update the travel time on road segments. The updated
travel time can be used as the weight of road segments when computing the fastest path using a
shortest path algorithm such as the Dijkstra’s algorithm.
4.3 Interplay between CLLA+ and Lane-Configuration Aware Routing
In our proposed solution, CAVs use Lane-Configuration Aware Routing to compute the shortest
path whenever lane-configurations or traffic conditions change. We assume frequent re-routing is
possible in the era of CAVs as the vehicles can receive traffic management information constantly
and reroute accordingly. On the other hand, the PDG in CLLA+ is updated based on the route
changes of vehicles. The updating of PDG is performed as follows. Whenever vehicles change their
routes, the upstream flow (𝑓𝑢𝑝 ) and the downstream flow (𝑓𝑑𝑜𝑤𝑛) (Section 4.1.1) of the affected edges
in PDG are updated. When running the GIE algorithm in CLLA+, Coordinating Agents always use
the up-to-date PDG to compute the coordinated lane allocation.
5 Experimental Methodology
We compare the proposed road network optimization solution, which includes CLLA+ and lane-
configuration aware routing, against four baseline algorithms. The results are collected from traffic
simulations with synthetic traffic data and real traffic data. We use SMARTS (Scalable Microscopic
Adaptive Road Traffic Simulator) [25] to perform traffic simulations.
5.1 Datasets
Our experiments are conducted with two datasets. To evaluate how the algorithms perform in
customized traffic conditions, we use a synthetic 7x7 grid network which is similar to the road
network used in a recent study on lane-direction changes with CAVs[8]. During an experiment,
vehicles are generated in the first 40 minutes into the simulation. After 40 minutes, the simulation
keeps running until all vehicles that are generated reach their destination.The shortest path between
the source and the destination is computed using the Dijkstra’s algorithm with Equation 5. We
simulate four traffic patterns using the synthetic road network. The traffic patterns are as follows.
1. Rush hour traffic (RH): In this setup, the traffic demand is directionally imbalanced to

represent rush hour traffic patterns. Directionally imbalanced trafficmeans there is a large difference
in the traffic demand between the two directions at individual road segments.
2. Bottleneck traffic (BN): This setup generates a high volume of traffic passing through the

centre of the grid network. All the vehicles generated in this setup need to pass the centre of the
grid during their journey. This type of traffic patterns create bottleneck links at the centre of the
network. This can simulate the traffic around the downtown area of many large cities.
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3. Mixed traffic (MX): Mixed traffic contains both rush hour and bottleneck traffic conditions
in the same network with each traffic pattern accounts for 50% of total traffic.

4. Random traffic (RD): Traffic is generated randomlywhere the source node and the destination
node of each vehicle are selected uniformly at random from the road networks nodes.

Fig. 6. The road network of Midtown Man-
hattan used in the experiments.

We also use a real-world traffic dataset that contains
the taxi trip records from the New York City1. The data
includes the source, the destination, and the start time of
the taxi trips in the city. We pick an area of Manhattan for
simulation (Figure 6) because the area contains a larger
amount of taxi trip records compared to other areas. The
area consists of 656 road segments and 366 intersections.
We consider two versions of Manhattan road network.
One is the original Manhattan road network where
the number of lanes in each road segment is the same as
the value in the original road map. For this road network,
there is no lane-direction change in two-lane road seg-
ments because we assume that there should be at least
one lane in either direction at any time. The other ver-
sion is an up-scaled Manhattan road network where we up-scaled the number of lanes in road
segments such that all the road segments have 6 lanes. We create this version for two reasons. First,
we want to simulate a large volume of traffic in a real-world road network. Second, the up-scaling
allows us to change the lane-directions at all road segments in the road network.

The road network of the simulation area is loaded from OpenStreetMap2. For a specific taxi trip,
the source and the destination are mapped to the nearest OpenStreetMap nodes. Since the taxi data
can not represent all the traffic in the road network (according to the reports 1,3, yellow taxi trips
account for around 10% of traffic), we up-sampled the data to create a certain amount of traffic. More
specifically, for each taxi trip record, we generate 10 vehicles with the same source-destination
pair in the simulation. We have up-sampled the traffic further in the up-scaled Manhattan road
network so that the both up-scaled Manhattan road network and original Manhattan road
network have same traffic congestion levels. Upsampling is a common practice for estimating the
total traffic volume based on a limited set of real data. For example, a recent work uses upsampling
to simulate realistic traffic volume based on the same Manhattan TAXI dataset as our work [6].
Another work uses upsampling to estimate traffic volume in Hong Kong based on taxi counts [20].

The shortest path between the source and the destination is computed using the Dijkstra’s
algorithm. The travel cost of the road segments is the travel time computed using Equation 5.
During an experiment, vehicles are generated during the first 30 minutes of simulation. After the
30 minutes, the simulation keeps running until all vehicles finish their routes (since the Manhattan
network is much larger than the synthetic 7x7 grid network, traffic is generated only in the first
30 minutes so that all vehicles finish their routes within an hour). In our experiments, the traffic
signals by default use static timing in all solutions unless otherwise specified as dynamic timing.
5.2 Comparison Baselines
Different to our proposed solution, existing lane-direction configuration methods [8, 14, 32] assume
the arrival time of all vehicles (future traffic dynamics) are known at the beginning of the simulation.
As this assumption is not valid when working with real-time traffic data, in our work, we do not

1https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
2https://www.openstreetmap.org
3http://www.nyc.gov/html/dot/downloads/pdf/mobility-report-singlepage-2019.pdf
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assume such future traffic dynamics are known a priori. Therefore, we cannot compare our solution
with them in this work. Instead, we conduct comparative tests against the following solutions
which can work with real-time data.

By default the baselines contain the following settings unless specified in the baseline description.
1) traffic signal timing is fixed; 2) cars can reroute; 3) car routes are computedwith lane-configuration
aware routing; 4) lane directions are changed. We denote our proposed solution as CLLA+ for the
rest of the section. The baseline solutions are as follows.

1. No Lane-direction Allocations (noLA): This solution does not do any lane-direction change.
Since noLA does not change the lane-configuration of the road network, lane-configuration aware
routing mechanism is only used for re-routing when traffic conditions change. This solution uses
fixed traffic signals.
2. Demand-based Lane Allocations (DLA): This solution assumes that the full knowledge

of traffic demand at given time step and vehicle routes are known at any given time step. DLA
computes expected traffic flow for every edge for both directions by projecting the current vehicle
paths to each edge. This way we compute the number of vehicles that plan to go from each edge.
Then in this method, we allocate more lanes for a specific direction when the traffic demand per
lane in the direction is higher than the traffic demand per lane in the opposite direction. Same as
CLLA+, DLA configures lane-directions at a certain time intervals. This solution uses fixed traffic
signals and car routes are computed with lane-configuration aware routing.
3. Local Lane-direction Allocations (LLA): This solution uses multiple learning agents to

decide lane-direction changes. The optimization is performed using the approach described in
Section 4.1.2. LLA is similar to CLLA+ but there is no coordination between the agents. This solution
uses fixed traffic signals and car routes are computed with lane-configuration aware routing.

4. Dynamic Traffic Signals (DTS): All the above solutions and CLLA+ by default use fixed traffic
signals. This solution uses DTS and does not change lane-configurations. The lane-configuration
aware routing mechanism is only used for re-routing when traffic conditions change.
5. Dynamic Traffic Signals and CLLA+ (DTS_CLLA+): CLLA+ by default uses fixed traffic

signals. This solutions combines CLLA+ with dynamic traffic signals.
5.3 Evaluation Metrics
We measure the performance of the solutions based on the following metrics.

Deviation from Free-Flow Travel Time: The free-flow travel time of a vehicle is the shortest
possible travel time achieved when the vehicle travels at the speed limit of the roads without
slowing down at traffic lights during its entire trip. Deviation from Free-Flow Travel Time (𝐷𝐹𝐹𝑇 )
is defined as in Equation 6, where 𝑡𝑎 (𝑖) is the actual travel time of vehicle 𝑖 , 𝑡𝑓 (𝑖) is the free-flow
travel time of the same vehicle and 𝑛 is the total number of vehicles.

𝐷𝐹𝐹𝑇 =
1
𝑛
×

√√
𝑛∑︁
𝑖=1
(1 − (𝑡𝑎 (𝑖)/𝑡𝑓 (𝑖)))2 (6)

The value (𝑡𝑎/𝑡𝑓 ) shows the extent that a vehicle’s travel time deviates from the free flow travel
time. Since the minimum value of (𝑡𝑎/𝑡𝑓 ) is 1, we can measure traffic efficiency by computing the
standard deviation of the gaps between 1 and (𝑡𝑎/𝑡𝑓 ) for all vehicles. A lower DFFT means most of
the vehicles in the simulation reach their destination without taking much longer time than free
flow travel time.
Average Travel Time: We compute the average travel time based on all the vehicles that

complete their trips during a simulation. A higher average travel time indicates that the traffic is
more congested during the simulation. Our solution aims to reduce the average travel time.

Travel Time Gain: Travel time gain (𝑇𝑇_𝑔𝑎𝑖𝑛) is used to evaluate the advantage of CLLA+ over
the baselines. Since the range of average travel time changes between different traffic scenarios, it is
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difficult to compare CLLA+’s advantage between different scenarios by just using the average travel
time.𝑇𝑇_𝑔𝑎𝑖𝑛 provides a way to measure improvement from CLLA+ over baselines across different
traffic scenarios. The metric is defined with the following equation.𝑇𝑇_𝑔𝑎𝑖𝑛(𝑥) = (𝑡𝑥 − 𝑡𝐶𝐿𝐿𝐴+)/𝑡𝑥 .
In this equation, 𝑥 refers to any baseline defined in Section 5.2. The variables 𝑡𝑥 and 𝑡𝐶𝐿𝐿𝐴+ refer to
the average travel time achieved by the baseline 𝑥 and CLLA+ respectively.

Total Number of Lane-Direction Changes: Frequent changes to lane directions may lead to
chaotic scenes, especially in cities with complex road networks. It would be difficult to manage
traffic congestion and traffic accidents when lane-direction changes become frequent. This metric
is used to evaluate the stability of road networks. When the total number of lane-direction changes
across the entire network is lower, the stability of the road network is higher.
5.4 Parameter Settings
For LLA and CLLA+, the learning rate 𝛼 is 0.001 and the discount factor used by Q-learning is
0.75. These settings are found through a parameter sweep which maximises the reward function in
Section 4.1.2. The RL Agents are pre-trained using the above parameters, based on the traffic at a
single road segment before they are deployed to all the roads in a road network. We conduct two
types of tests, Comparative Test and Sensitivity Test. In Comparative Test, we compare baseline
solutions with CLLA+ in the synthetic road network and the real-world road network with different
traffic patterns. The values of the parameters, except for the traffic pattern parameter, are set to the
default values given in Table 1. In Sensitivity Test, we analyse the performance of CLLA+ for each
parameter shown in Table 1. For each experiment in the sensitivity analysis, we vary one parameter
within the given Range in Table 1 while other at their Default Value unless specified otherwise in
the experiment. All the sensitivity tests use the synthetic road network in the simulations. The
details of the parameters are as follows.
5.4.1 CLLA+ parameters

1. Lane-configuration Aware Routing: This parameter indicates whether CLLA+ uses lane-
configuration aware routing mechanism. CLLA+ uses lane-configuration aware routing mechanism
by default. When CLLA+ does not use lane-configuration aware routing we denote the solution as
CLLA_FR. When CLLA+ uses the average travel speed of a road segment as the rerouting metric
rather than the lane-configuration aware routing we denote the solution as CLLA_ATS.

2. Assignment Interval: Assignment interval is the time interval in which the proposed lane-
direction changes are coordinated and executed.
3. Lookup Distance: As mentioned earlier, CLLA+ uses only the edges within the lookup

distance (𝑙𝑑 ) in a vehicle path when building the PDG. In other words, lookup distance affects the
global influence of traffic from neighboring road segments, which may be beyond the immediate
neighbors of a road segment. A very large value of lookup distance may not lead to a better traffic
efficiency. To determine the meaningful range of this parameter, we perform a parameter sweep
until we observe a steady travel time performance.

4. Moving AverageWindow Size for PDG: Using the number of vehicles of one time step leads
to a high variance of the value across adjacent time steps. To reduce the variance, we use the moving
average of the number of vehicles as the input to CLLA+. The computation of moving average
values uses a recursive function that can consider multiple previous time steps (Equation 3). The
moving average window size (the length of the period covering the previous steps for computation)
should be set to a meaningful level. If the size is zero, the computation does not consider the traffic
conditions of any previous step. If the size is significantly large, the moving average may not reflect
the recent trend of traffic flow. We experiment with the moving average window size between 0
and 20 minutes.
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5. Maximum Number of Conflicts Allowed in CLLA+: CLLA+ rejects the lane-changes pro-
posed by RL Agents if the changes conflict with the traffic in other road segments. In Global Impact
Evaluation algorithm, a proposed change is discarded if there is at-least one conflict (Algorithm 2
Line 15-17). Therefore the default value of the maximum number of allowed conflicts is 0. In this
experiment, we increase the threshold to evaluate the impact of this parameter.

6. Communication Delay: The communication between RL agents may experience delays in the
real world due to numerous factors such as noisy communication channels. This parameter controls
the level of communication delay in the experiments. We simulate the effect of communication
delay as follows. With a non-zero delay value, lane direction changes are not applied immediately
when the decisions are made. Instead, they are applied after the delay period. In addition to the
default setting with no communication delay, we experiment with three other delay settings. The
first is a fixed 30-second delay. The second is a fixed 60-second delay. The third is a random delay
within a 60-second window. Under the last setting, we create a random delay value between 0s to
60s each time that a lane-direction change is scheduled.
5.4.2 Traffic parameters

1. Traffic Demand: Traffic demand refers to the number of vehicles that follow the same path
per minute. To determine the meaningful range of this parameter, we increased the traffic demand
from a low level in the synthetic network with fixed traffic signal timing until the road segments’
output flow capacity is reached, i.e., when the congestion levels are at the peak of the fundamental
flow diagram [15]. The output flow capacity for a fixed lane-configuration was around 24 vehicles
per minute and with increased lanes, the output flow capacity was around 32 vehicles per minute.
We set the default value to 28 vehicles per path per minute. To simulate traffic with a variety of
congestion levels, we vary the value of this parameter from 20 to 36 vehicles per path per minute.

2. Traffic Demand Change Interval: Traffic demand can change significantly during a short
period of time. Consider two regions of a road network where one region generates more traffic
while the other region generates a lower amount of traffic. After some time interval, the traffic
generation rates from two regions can be interchanged, resulting a major change in traffic flow in
the network. This interchanging time interval is denoted as the traffic demand change interval.
3. Total Number of Lanes in a Road Segment:We vary the total number of lanes in a road

between 4-8 as most road segments in real-world networks are within this range.
4. CAV Percentage: The CAV percentage refers to the percentage of fully CAVs with respect to

the total number of vehicles in the simulation. The default value for this parameter is 100%.
5. Traffic Pattern: The experiments include the four traffic patterns described earlier, which are

Rush hour traffic (RH), Bottleneck traffic (BN), Mixed traffic (MX) and Random traffic (RD).
6 Experimental Results
6.1 Comparative Tests
This section presents the performance of CLLA+ and other baselines defined in Section 5 in terms
of average travel time and deviation from free-flow travel time using real-world and synthetic data.
Average Travel Time: As shown in Table 2, CLLA+ achieves the best performance under

all traffic conditions with the synthetic road network. LLA performs well in rush hour traffic
conditions (RH) as it uses reinforcement learning as same as CLLA+. However, LLA performs
poorly when there are bottleneck traffic links (BN) due to the lack of coordinating process. This
trend is also observed with DLA. In addition, when traffic pattern changes frequently (as in RD),
DLA performs poorly as it cannot estimate the demand. The baseline noLA performs poorly in RH
traffic because it cannot change lane configurations to accommodate the traffic that is directionally
imbalanced during the rush hours. However, noLA performs well in RD when most roads do not
have directionally imbalanced traffic.
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Parameter Range Default
Lane-configuration Aware Routing On, Off On
Assignment interval in CLLA+ 0.5 - 5 (minutes) 1m
Assignment interval in DLA 0.5 - 5 (minutes) 4m
Lookup distance in CLLA+ 0 - 8 (# edges) 7
Moving average window size for PDG 0 - 20 (minutes) 1m
Maximum number of conflicts allowed in CLLA+ 0 - 8 0
Traffic demand 20-36 vehicles/path/min 28
Traffic demand change interval 5 - 30 (minutes) 20m
CAV percentage 0-100% 100%
Total number of lanes in a road segment 4-8 6
Traffic pattern RH, BN, MX, RD RH
Communication delay of CLLA+ 0s, 30s, 60s, Random (0-60s) 0s

Table 1. Parameter Settings

Baseline Travel Time(s) DFFT
RH BN MX RD RH BN MX RD

noLA 600.83 607.86 603.33 320.97 3.39 3.43 3.38 2.40
LLA 563.73 705.86 573.24 325.04 3.09 3.93 3.08 2.42
DLA 580.67 617.34 595.09 342.58 3.02 3.37 3.36 2.71
CLLA+ 517.9 599.69 514.88 318.76 2.75 3.30 2.78 2.39

Table 2. Travel times and their deviation from free-flow travel time (DFFT) achieved by baselines and CLLA+
with four synthetic traffic patterns (RH, BN, MX, RD) in the synthetic 7x7 grid network.

Baseline Travel Time Congested Travel Time Imbalanced Travel Time DFFT
7am 12pm 7am 12pm 7am 12pm 7am 12pm

noLA 954.71 1007.81 1231.93 1414.07 1051.01 1554.80 9.19 12.18
LLA 915.76 938.46 1142.08 1276.99 759.84 1183.38 8.36 10.07
DLA 923.24 1002.55 1165.19 1386.44 859.37 1450.40 8.46 12.05
CLLA+ 893.79 925.42 1019.34 1214.69 726.04 834.13 8.04 10.05
DTS 815.03 849.19 1325.81 1320.26 957.10 1124.46 7.65 9.43

DTS_CLLA+ 764.95 802.79 1014.94 1196.21 666.17 706.26 7.12 9.01
Table 3. Travel times achieved in the up-scaled Manhattan road network using New York taxi data.

We also conduct experiments using real world taxi data in the Manhattan road network. The
average travel time achieved with the up-scaled version of the road network are shown in the
Travel Time column in Table 3. To get a deeper understanding of CLLA+’s performance travel
time-wise, we introduce two metrics in addition to the Average Travel Time. First, we compute
the average travel time of vehicles with a travel time that is more than 8 times4 as long as their
free-flow travel time. These vehicles move in highly congested roads. These results are shown in
Table 3 in the Congested Travel Time column. Second, we analyse the average travel time of
vehicles that are travelling in road segments in which the traffic is directionally imbalanced. This is
because vehicles in this type of road segments are the ones that mostly benefit from lane-direction
changes. For example, directionally imbalanced traffic normally exists during rush hours, such as
when most of the commuters are traveling towards a city centre for work. These results are shown

4The multiplication factor of 8 is chosen since this value is valid for roughly a half of all the vehicles.
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in the Imbalanced Travel Time column in Table 3. Traffic from two times of the day, 7 am and 12
pm, are used to represent rush hour traffic and normal traffic in Table 3.

The experiments on the up-scaled Manhattan network measure the performance of CLLA+ and
5 other solutions. First we analyze the results for the baselines which use fixed traffic signals
(from row 1 to row 4 in Table 3). For these results, CLLA+ achieves an average of 4% travel time
improvement compared to DLA. In traffic engineering terms, this is a significant improvement
as the delay of travel time is normally a small percentage of the free-flow travel time, which is
not reducible. For example, it is estimated that the delay of travel time between 10 biggest US
cities varies from 1.6% of the minimum travel time to 4.4% of the minimum travel time [4]. As
another example, the construction of a new road infrastructure is deemed as highly beneficial if the
infrastructure can lead to a 2.5% travel time improvement for the population of an entire city [22].
The result in Table 3 also shows that CLLA+ achieves a travel time improvement of around 3%
from the LLA algorithm, which highlights the importance of the coordination between RL Agents.
Compared to noLA, the improvement achieved by CLLA+ is around 8%. Based on the difference in
the total average travel time between CLLA+ and noLA, we can estimate the total time savings
for all the vehicles. For example, as shown in Table 3, the average travel time achieved by CLLA+
is 61 seconds lower than that achieved by noLA per vehicle. As there are 11k vehicles during the
simulation, the total time savings is 61*11000=671000 seconds, which is approximately 186 hours.
Then we analyse the results for the same solutions (from row 1 to row 4 in Table 3) using the
Congested Travel Time and the Imbalanced Travel Time. In the Congested Travel Time column
in Table 3, CLLA+ achieves the lowest travel time compared to the other baselines. The travel
time achieved by CLLA+ in congested situations is higher than the travel time improvement in the
situation with mixed congestion levels, which can be seen in the Travel Time column. For example,
at 12pm, the travel time improvement of CLLA+ compared to noLA is 9% in the Travel Time column
and is 14% in the Congested Travel Time column. In the Imbalanced Travel Time column, CLLA+
performs the best in terms of travel time gain compared to Travel Time or Congested Travel Time.
It is worthwhile to note that CLLA+ achieves around 30-45% travel time improvement over noLA.
This highlights the importance of real-time lane-allocation in rush hour type traffic conditions.
Finally, the last two rows of Table 3 show the performance of road network optimization that uses
dynamic traffic signals. DTS achieves a lower average travel time than the CLLA+ in both 7 am and
12 pm traffic. This is because, unlike lane-allocation, dynamic traffic signals can reduce every type
of traffic condition not limited to directionally imbalanced traffic. However, we should note that
the Imbalanced Travel Time for CLLA+ is much lower than that of DTS. This is because CLLA+ is a
better solution for directionally imbalanced traffic compared to DTS. The goal of our research is
not to compete against the traffic signal optimization but rather to propose an additional traffic
management solution and therefore we combine dynamic traffic signals with CLLA+ in the last row
denoted as DTS_CLLA+. DTS_CLLA+ achieves significantly lower travel times than other baselines
in many cases, which shows that these two complementary road network optimization solutions
(DTS and CLLA+) can work well when combined together.

We also conduct experiments on the original Manhattan network. Compared to the results with
the up-scaled Manhattan network, the original network achieves similar results except that the
travel time is slightly higher in some scenarios. This is due to the fact that a part of the road
segments in the original network, i.e., the road segments with only two lanes, is not suitable for
lane-direction changes.
In addition, we evaluate the solutions across a wide range of upsampling factors that may suit

various traffic conditions. A larger upsampling factor leads to a higher level of traffic volume. The
results demonstrate that CLLA+ helps reduce travel time across different upsampling factors. Table 4
shows that using CLLA+ with DTS reduces travel time from using DTS alone in all cases. When the
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upsampling factor increases, the travel time reduction becomes more significant. For example, the
ratio of travel time reduction over the travel time achieved by using DTS alone changes from 0.3%
to 17.7% as the upsampling factor increases from 1 to 20. When the upsampling factor is higher,
there tends to be more congestion when using DTS alone due to the increase of traffic volume in a
fixed set of lanes. CLLA+ can help balance traffic flow in different directions regardless of the level
of traffic load, leading to lower travel times even with large upsampling factors.

Upsampling CLLA+ DTS
Factor with DTS

1 561.69s 563.44s

5 620.34s 631.72s

10 768.84s 808.14s

15 1150.55s 1208.57s

20 1569.9s 1906.41s

Table 4. Average travel time in up-scaled
Manhattan Road network with RH traf-
fic pattern when the upsampling factor in-
creases from 1 to 20.

Deviation from Free-Flow Travel Time (DFFT):
The last columns in Table 2 and Table 3 show DFFT val-
ues. The results show that CLLA+ is able to achieve a
lower deviation from the free-flow travel time compared
to DLA and LLA. It is worth noting that in Table 3 DFFT
is lower for CLLA+ and LLA compared to DLA. This
is because learning-based methods (CLLA+ and LLA)
can adapt faster to real-time changes compared to DLA,
which works based on estimating the demand. Because
noLA is unable to allocate lanes dynamically, the DFFT
for noLA is higher than all other solutions in all cases in
Table 3. DTS_CLLA+ achieves the lowest DFFT out of all,
which further demonstrates that the traffic signal and the
lane-configuration optimization can work well together.

Total Number of Lane-Direction Changes: We col-
lect the total number of lane-direction changes from sim-
ulations on the 7 × 7 synthetic network. All the simulations simulate traffic for one hour. We
compare CLLA+ against LLA and DLA in two traffic scenarios. The results are shown in Table 5.

Rush Hour Random
Traffic Traffic

CLLA+ 735 1149

LLA 1119 1749

DLA 626 2006

Table 5. Number of lane-directions
changes made by CLLA+, LLA and
DLA in two traffic scenarios.

Compared to LLA with no coordination between agents,
CLLA+ decreases the number of changes by 34% as its global
impact evaluation algorithm skips local changes that are not
globally beneficial. Interestingly, DLAmakes less changes than
CLLA+ in the rush hour scenario but makes significantly more
changes than CLLA+ in the random traffic scenario. This is
because DLA simply makes changes based on traffic demand
known beforehand without considering real-time traffic con-
ditions. Therefore, when most of the vehicles plan to travel in
one direction during rush hour, DLA sees less need to make
lane-direction changes. On the contrary, when route plans
show irregular traffic demand in the random traffic scenario,
DLA makes significantly more changes to cope with it. Dif-
ferent to DLA, CLLA+ makes decisions based on real-time traffic conditions. This allows it to
make necessary changes and avoid redundant ones. We should also note that in both cases CLLA+
achieves the lowest travel times among the three solutions (Table 2). In Rush Hour scenario, CLLA+
achieves 517.9s travel time while LLA and DLA achieve 563.7s and 580.7s respectively. In Random
Traffic scenario, CLLA+ achieves 318.8s while LLA and DLA achieve 325s and 342.6s respectively.

Computation Time: In addition, we evaluate the computation time of CLLA+ and compare the
results against an existing work that uses linear programming for lane-direction optimization [8].
Like CLLA+, the existingwork optimizes lane directions and vehicle routes simultaneously. However,
the existing solution makes a one-off plan of lane directions and vehicle routes, assuming future
travel schedule of all vehicles is known beforehand, while our approach performs an iterative
optimization based on real-time information at a regular time interval (1 minute in the experiments).
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For fairness, we collect the maximum computation time per interval with CLLA+. To get this value,
we first measure the computation times spent at different optimization rounds during a simulation.
Then, among all the computation times, we pick the highest value. We use the same road network
as in the existing work [8], which covers a small area of Manhattan. We run simulations with
different traffic loads.

Number of Maximum
Vehicles Time per

Interval

500 0.003s

1000 0.003s

1500 0.003s

2000 0.008s

2500 0.009s

3000 0.01s

3500 0.011s

4000 0.011s

Table 6. The maximum computa-
tion time per interval in CLLA+
under different traffic loads.

As shown in Table 6, the maximum time per interval in CLLA+
stays at 0.003 second when the number of vehicles changes from
500 to 1500. A further increase of traffic load leads to an increase of
the maximum computation time. With 4000 vehicles, which is sig-
nificantly high for the small simulation region, the maximum com-
putation time per interval is only 0.011 second. As the time interval
between two optimization rounds is 1 minute, the computation
time is negligible. In comparison, the linear programming-based
solution spends 8-400 seconds on computation when there are only
5-50 vehicles respectively [8], making it unpractical for real-time
optimization. The results are not surprising as reinforcement learn-
ing has a significant advantage over classical linear programming
in terms of computational efficiency.
6.2 Sensitivity Test
6.2.1 CLLA+ parameters
Lane-configuration Aware Routing: Figure 7a shows

TT_gain(CLLA_FR) achieved by CLLA+ and CLLA_ATS on two
traffic patterns, Rush hour (RH) and Random (RD), in the synthetic
road network. The prefixes RH_* and RD_* in the labels in the
figure indicate the simulated traffic pattern. As defined earlier, CLLA_FR refers to the solution
wherein CLLA+ does not use lane-configuration aware routing, while CLLA_ATS refers to the
CLLA+ that uses the average travel speed of a road segment for the rerouting matrix (i.e. weight of
the segment when computing routes). In this figure, TT_gain(CLLA_FR) shows the advantage of
four baselines over CLLA_FR.

CLLA+ achieves a higher TT_gain under the random traffic conditions (RD_CLLA+) compared
to the rush hour (RH_CLLA+), because lane-configurations are changing more frequently in the
random traffic scenario compared to the rush hour scenario. TT_gain(CLLA_FR) for CLLA_ATS
is slightly lower than CLLA+. This is because, for rerouting, CLLA+ considers both the lane-
configuration and traffic level, while CLLA_ATS only considers the information about the traffic
level, resulting in a lower TT_gain compared to CLLA+.
Figure 7b and 7c demonstrates the performance improvement of the lane-configuration aware

routing in terms of the actual travel time for the same scenarios. With dynamic rerouting, CLLA+
achieves a substantial reduction in travel time compared to CLLA_FR (5% and 17% in the rush hour
traffic and random traffic, respectively). Also, since CLLA+ considers the lane-configuration in
addition to traffic conditions, CLLA+ achieves lower travel times compared to CLLA_ATS.
Assignment Interval: As this parameter affects both CLLA+ and DLA, we include both so-

lutions in the result (Figure 8a). The figure shows the average travel time of CLLA+ and DLA,
when assignment interval is changed from 0.5-minutes to 5-minutes. When the assignment interval
increases, travel time achieved by DLA decreases because DLA is more likely to get a good esti-
mation of traffic demand when the assignment interval is larger, which can lead to more effective
optimizations. The default value for DLA is set to 4-minutes which corresponds to the lowest
travel time over assignment interval range. The result shows that 1-minute time interval is good
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Fig. 7. Travel time improvement with lane-configuration aware routing for different traffic patterns
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Fig. 8. Sensitivity analysis for CLLA+ parameters

enough for CLLA+ to guarantee a stable performance (as the average travel time at 0.5-minutes
and 1-minute is the same for CLLA+, the default value for CLLA+ is set to 1-minute to reduce the
number of computations per unit time). The performance at shorter assignment intervals is more
important because when real-time traffic changes frequently, the lane directions may also need to
be changed frequently. Therefore CLLA+ is a better choice than DLA as it achieves a lower travel
time with short assignment intervals.
Lookup Distance: Figure 8b shows the average travel time of CLLA+ when lookup distance

of PDG changes from 0 to 8 (the lookup distance is measured in terms of the number of edges).
The figure shows that a larger lookup distance can result in a lower average travel time. When
the lookup distance increases, CLLA+ considers more road segments in a vehicle path for conflict
evaluation. This helps identify more conflicting lane-direction changes on the path within the
lookup distance. By resolving more conflicts, CLLA+ is able to reduce the average travel time. We
should note that the reduction in the average travel time becomes less significant when the lookup
distance is higher than 6. This is because the impact of a lane-direction change reduces when the
change is further away.
Moving Average Window: Figure 8c shows how the average travel time of CLLA+ changes

when moving average window for PDG changes from 0 to 20 minutes. When the window size is
small (close to zero), only the number of vehicles of the current time step in a road segment is used
as input to the CLLA+ algorithm. This results in a high variance of the measurement of traffic flow
because the number of vehicles in a road segment can vary significantly across consecutive time
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steps. Consequently, a small window leads to a higher travel time as the lane-configurations are not
based on a meaningful trend of traffic flow. On the other hand, when the moving average window
is very large, e.g., 10 minutes, the moving average is unable to capture the dynamic changes in
the measurement of the number of vehicles in a road segment. This also results in a higher travel
time. In this experiment, the default window size is set to 1 minute to balance both high variance
in traffic flow and dynamic changes in traffic load.

Maximum Allowed Conflicts: Figure 8d demonstrates how the average travel time of CLLA+
varies with the maximum conflicts threshold. The average travel time of LLA for the same scenario
is shown in the figure for comparison. We can see that as the threshold increases the average
travel time increases as well. When the number of maximum conflicts is set to 6 or above, the
performance becomes similar to LLA that has no coordination between lane-direction changes.
At higher values of this parameter, the Coordinating Agents in CLLA+ algorithm approves more
changes proposed by RL Agents even if there are conflicts, which reduces the coordinated behaviour
between RL Agents. In such situations, the performance of CLLA+ becomes much similar to LLA
as LLA operates locally and does not take conflicts into account. The result shows a general trend
that the reduction of coordination leads to an increase of average travel time.

Communication Average Travel
Delay Time

0s 414.2s

30s fixed 420.08s

60s fixed 545.41s

Random (0-60s) 428.29s

Table 7. Average travel time achieved by
CLLA+ with different communication de-
lays between the agents.

Communication Delay: The impact of communica-
tion delay is evaluated on the 7 × 7 grid network. As
expected, with a larger communication delay, the travel
time increases (Table 7). Due to the dynamic nature of
traffic, a lane-direction change optimized for a specific
traffic condition can become less effective after a short pe-
riod. When communication delay increases, there tends
to be more significant changes in traffic conditions, re-
ducing the effectiveness of CLLA+. We can see that a
random delay within 60s is acceptable as it only increases
the average travel time by 3.4% compared to the best case
(with no delay).

6.2.2 Traffic parameters
Traffic Demand: Figure 9a shows the Travel Time gain (TT_gain) achieved by CLLA+ over

noLA when demand changes. When demand is low, a system with no lane-direction allocation does
not observe significant traffic congestion, leading to a low TT_gain. When the demand increases,
a road network with no lane-direction allocation is likely to become congested. A similar trend
is shown in Figure 9b in terms of average travel time achieved by CLLA+ and noLA. When the
traffic demand is low, allocating more lanes does not reduce the travel time. As the traffic demand
increases the gap between travel time achieved by CLLA+ over noLA increases.
Traffic Demand Change Interval: Figure 9c shows how TT_gain changes with the traffic

demand change interval. Here, the TT_gain is computed between CLLA+ and noLA. As shown
in the figure, TT_gain gradually decreases when traffic demand change interval reduces from 30
minutes to 10 minutes. TT_gain becomes negative when the time interval is less than 10 minutes.
The reason behind this poor performance in CLLA+ (at 10-minute interval) can be explained as
follows. Due to lane clearing time associated with lane-direction changes, the travel time of vehicles
temporally increases. When traffic demand changes frequently, lane clearing time becomes a major
factor influencing the travel time of vehicles.

Figure 9d demonstrates the same trend in terms of the average travel time. As the traffic demand
change interval increases, traffic becomes more directionally imbalanced. The average travel time
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of noLA increases at the same time because it cannot adapt to the change of the traffic pattern.
We should note that CLLA+ is able to keep the average travel time within a small range with
various settings of the traffic demand change interval. This is because CLLA+ is able to change the
lane-directions as needed in directionally imbalanced traffic.

CAV Percentage: We conduct experiments to evaluate the effectiveness of CLLA+ when CAVs
are mixed with human-driven vehicles. The key difference between CAVs and human-driven
vehicles is that human-driven vehicles may not be able to adapt to lane-direction changes as quick
as CAVs. Therefore, in our simulations, when human-driven vehicles present in a road segment,
the traffic management system does not perform lane-direction changes. We consider two types of
human-driven vehicles. One is unconnected human-driven vehicles; another is connected human-
driven vehicles. Unconnected human-driven vehicles do not reroute based on the latest traffic
information and do not send its path information to the agents. Connected human-driven vehicles
can reroute and can also send path information to the agents. The blue line in Figure 10a shows the
average travel time with a mix of unconnected human-driven vehicles and CAVs. The red line in
the figure shows the average travel time with a mix of connected human-driven vehicles and CAVs.

In both scenarios, a higher percentage of CAVs leads to a lower average travel time. For example,
when the percentage of CAVs increases from 0% to 20%, the average travel time drops from 490s to
400s when CAVs are mixed with unconnected human-driven vehicles. With a larger percentage of
CAVs, the traffic management system has a better understanding of the traffic conditions across the
whole road network, resulting in more effective traffic control decisions. A difference between the
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two scenarios is that the average travel time with 0% CAVs is significantly lower in the connected
human-driven scenario than in the unconnected human-driven scenario (there is an 18% reduction
of travel time when the human-driven vehicles are changed from unconnected to connected).
This shows that CLLA+ is applicable to a variety of traffic scenarios if vehicles are connected. We
expect that the applicability of CLLA+ will grow significantly with the increasing connectedness of
vehicles, given the fact that the market share of CAVs is growing fast [29].

Number of Lanes: We use three 7x7 grid networks in which the total number of lanes per road
segment is 4, 6 and 8, respectively. Generating the same amount of traffic in different networks
may not result in the same congestion levels due to the difference of the number of lanes. For
instance, creating the same amount of traffic in a network with 8 lanes per road segment may lead
to significantly lower travel time compared to creating the same amount of traffic in a network with
4 lanes per road segment, no matter which solution is used. To minimize the impact of this problem,
the traffic generation rate is set to 8 vehicles per path per lane per minute for all three networks.
Figure 10b shows that travel time does not change significantly with different numbers of lanes,
meaning that the level of congestion does not change when varying the number of lanes. Figure
10c shows that the travel time improvement achieved by CLLA+ does not change significantly with
different number of lanes. This demonstrates that lane-allocation is robust to the total number of
lanes in a road segment and can work well with any number of lanes.
6.3 Extension of RL States

Traffic With Traffic Without Traffic
Pattern Signal States Signal States

Rush Hour 408s 414s

Random 279s 284s

Table 8. Travel times achieved by CLLA+with andwith-
out the additional traffic signal states.

Due to the complexity of traffic systems, it may
be necessary to include more RL states when
optimizing lane directions. Based on our pre-
liminary results, we select the states that have
the most significant impact on the performance
of CLLA+ as the default set of states for the
solution. To demonstrate the possibility of ex-
tending the set of RL states, we implement two
new states related to traffic signals and present
the results here. The two states reflect the green
time ratio at a road segment, one for upstream direction and another for downstream direction.
The green time ratio is computed based on the total green time within a time window, which is
set to 5 minutes. For example, let us assume that the upstream direction of a road segment was
granted green light for 2 minutes during the past 5 minutes. Then the upstream green time ratio
for this road segment is 2/5=0.4. To further reduce the impact of random factors, the two states are
computed based on the moving average of green time ratio. We compare CLLA+ with the original
set of RL states and the version with the two additional states. We run simulations on the 7× 7 grid
network with two traffic patterns, rush hour traffic and random traffic. The results are shown in
Table 8. We can see that there is a small improvement when the traffic signal states are included.
For example, the improvement is 1.5% in rush hour traffic. Like the traffic signal states, it is possible
to add other states into the solution. However, as adding more states generally impacts learning
efficiency significantly, it may not be worth adding states for a small gain in traffic time.
7 Conclusion
We have shown that effective road network optimization can be achieved with dynamic lane-
direction configurations. At the core of our solution is an intelligent data management and decision
making mechanism. Our proposed multi-agent solution, CLLA+, can help reduce the travel time by
combining adaptive learning and the global coordination of lane-direction changes. The proposed
solution adapts to significant changes in traffic demand in a timely manner, making it a viable
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choice for realizing the potential of connected autonomous vehicles on road network optimization.
Compared to the state-of-the-art solutions based on lane-direction configuration, CLLA+ runs
more efficiently and is scalable to large networks. We also introduce the lane-configuration aware
routing technique to account for the greedy route choice behaviour of vehicles when lane-direction
changes in real-time. We have shown that our CLLA+ algorithm is able to adapt to such changes
and our empirical results show that users’ route changes leads to further travel time reduction. Our
experimental results also demonstrate that CLLA+ can work with partially autonomous vehicles,
proving that CLLA+ can be applied in real road networks in the near future.

With the advancement of intelligent traffic management technologies, one can explore innovative
road network optimization solutions that involve other aspects of traffic ecosystems, such as
intelligent traffic signal control systems and optimized speed limits on roads, along with lane-
direction allocations. Finally, coordinating human-driven vehicles under various lane-direction
configurations is another interesting direction for future research.
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