
Automated Physical Designers:
What You See is (Not) What You Get

Renata Borovica Ioannis Alagiannis Anastasia Ailamaki
École Polytechnique Fédérale de Lausanne

1015 Lausanne, Switzerland
name.surname@epfl.ch

ABSTRACT
The explosion of available data in the last few years has in-
creased the importance of physical database design, since the
selection of proper physical structures (e.g. indices, parti-
tions and materialized views) may improve query execution
performance by several orders of magnitude. Commercial
DBMS vendors have recognized this need and offered auto-
mated physical design tools as part of their products. These
tools use what-if interfaces to simulate the presence of differ-
ent physical structures and recommend physical designs that
minimize the estimated execution time of a given workload.
Along with the recommended design, they deliver an esti-
mation of the expected improvement the new design brings.

In this paper, we examine the output of physical design-
ers, i.e., whether what we see as a result of the tuning (the
estimation of the improvement) is indeed what we may ex-
pect after applying the design (the actual improvement).
We evaluate three commercial physical designers by vary-
ing their input parameters on real and synthetic data sets.
Our results show that all three physical designers exhibit
highly unpredictable behavior in certain cases, indicating
that there is still significant room for improvement in terms
of their predictability and consequently, their quality.

Categories and Subject Descriptors
H.2.2 [Database Management]: Physical Design

General Terms
Measurement, Predictability, Experimentation.

Keywords
Physical Design, Databases, Predictability, Evaluation.

1. INTRODUCTION
In recent years, the field of physical database design has

become extremely popular and most commercial DBMS ven-
dors nowadays offer physical designers in their products [2,
10, 19]. Physical designers significantly facilitate the tuning
process and are an integral part of a broader effort toward
fully automated database management systems which aims

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DBTest’12, May 21, 2012 Scottsdale, AZ, U.S.A.
Copyright 2012 ACM 978-1-4503-1429-9/12/05 ...$10.00.

to: a) decrease the database administration cost and thus,
the total cost of database ownership, b) help non-experts to
use database systems and c) enable databases to move to
a different environment, such as the cloud where database
instances are offered as a service.

A typical physical designer tries to solve the following
problem: Given a workload W and a set of constraints C
(e.g. a storage budget, a time budget), find a set of physical
structures or a configuration P that minimizes the execution
cost for W and satisfies C. The output of a physical designer
is a recommendation of auxiliary structures (e.g. indices) se-
lected to boost performance for the given workload and an
estimation of the expected performance improvement. The
database administrator (DBA) examines the output of the
physical design process, verifies the usefulness of the pro-
posed configuration and decides what structures will be cre-
ated inside the database.

The only insight regarding the usefulness of the proposed
configuration is the expected improvement presented by the
tool. Changing the physical design is a heavyweight op-
eration, thus an inaccurate estimation regarding the con-
figuration usefulness may lead to ineffective resource allo-
cation; for instance, building an index that occupies large
storage space but provides marginal performance improve-
ment. From the DBA’s perspective, not getting the antic-
ipated performance improvement has a negative impact on
the user experience and may cause loss of trust toward the
effectiveness of the tool.

There is a plethora of published work on the topic of phys-
ical design [6]; however, it is mainly focused on the perfor-
mance impact of the recommended solutions, neglecting to
examine the accuracy of the designers’ estimations. An ac-
curate estimation implies that the recommendation can be
adopted with a high degree of confidence, while an inac-
curate estimation raises questions of the trustworthiness of
physical designers. Therefore, in this paper, we study the
predictability of physical designers in terms of how accu-
rately they estimate the effectiveness of their proposed con-
figurations. We base our evaluation on the output of three
commercial physical database designers.

Our experiments show that:

• All three physical designers exhibit highly unpredictable
behaviour, with discrepancies of up to 92% between
the estimated improvement they deliver and the ac-
tual improvement databases gain.

• A tight interaction with the query optimizer’s cost
model and a strong reliance on statistics have a sub-
stantial influence on the accuracy of the designer’s es-
timations.

• The presence of update statements in the workload is
especially challenging for the designers, making them
incapable of accurately modeling the trade-off between
the usefulness of proposed structures and the cost of
maintaining them.

The rest of the paper is structured as follows. In Section
2, we briefly describe the interaction between physical de-
signers and query optimizers. In Section 3, we present the
metrics we use along with the experimental methodology,
while we report experimental results in Section 4. Section 5
discusses our findings, and Section 6 offers our conclusions.

2. AUTOMATED PHYSICAL DESIGNERS
During the tuning process, physical designers rely heavily

on the query optimizer and its cost model. Therefore, in
this section, we discuss the details of this relationship and
further show how statistics affect recommendations. Finally,
we briefly summarize related work that evaluates the quality
of physical designers.

2.1 Interaction with the Query Optimizer
Physical designers invoke the query optimizer using what-

if interfaces [12] to simulate the presence of different de-
sign structures without materializing them [5]. Such an ap-
proach has several advantages: a) low overhead since the
examined physical structures are not actually created; b)
recommended structures, if implemented, are guaranteed to
be used by the optimizer; c) enhancing the optimizer’s cost
model improves query optimization from which physical de-
signers further benefit. The drawback is the reliance on a
single source of truth, the predictions of the optimizer. Op-
timizers are known to be error prone due to a multitude of
factors [8]. They rely on an embedded cost-model that does
not entirely represent reality, and on various data statistics
that might be unavailable or inaccurate.

2.2 Importance of Statistics
Statistics are an integral part of the optimization process

since the optimizer uses them to estimate the number of out-
put tuples of every operator in a query plan [1]. The result
size of a query that involves predicates on multiple attributes
depends on the joint data distribution of the attributes, i.e.,
the frequencies of all combinations of attribute values. Due
to the large multidimensional nature of joint distributions
and the high number of possible combinations, a direct ap-
proximation of the distributions is complex and expensive.
To simplify the estimations, commercial systems assume at-
tribute independence [3]. According to this assumption, the
selectivity of an operator filtering data on several predicates
is calculated as the product of the selectivities for each pred-
icate. In practice, the assumption is often violated, which
causes significant cardinality under-estimates. The latter
generates gross errors in query runtime predictions, which
leads to the choice of sub-optimal plans, and finally results in
design proposals that hurt performance instead of improving
it [13].

Considering the connection between the statistics, query
optimizer, and physical designer, it is clear that we cannot
simply isolate and assess the quality of physical designers,
without taking into account the query optimizer’s errors. In
this work we explore to what extent the mentioned interac-
tions affect the trustworthiness of physical designers.

2.3 Benchmarking Physical Design
Although several benchmarks for physical design already

exist, they all examine designers in the light of performance,
while no benchmark examines their predictability. Con-
senses et al. [9] introduce a framework to evaluate the
quality of physical designers while looking at the number
of tuned queries that are faster than a given threshold. Al-
though insightful on a workload basis, the metric does not
give any insight on query-by-query performance. Therefore,
a complementary metric has been proposed, which measures
the cost improvement on a query basis [4]. Schnaitter et al.
[16] look at minimizing the combined cost of executing a
query under a configuration C and the cost of changing the
current configuration to C. The last metric is more mean-
ingful in the context of online tuning, while in this work we
consider off-line tuning and assume a representative training
workload given a priori.

All metrics presented until now are focused on the per-
formance, while we look at the predictability and trustwor-
thiness of physical designers. Hence, our metric provides
different insights regarding the quality of physical designers.

3. TESTING FOR PREDICTABILITY
In this section, we describe the evaluation metrics, the

workloads and our experimental methodology employed to
compare the physical designers.

3.1 Evaluation Metrics
We calculate the predictability of physical designers as

the difference between the expected improvement they de-
liver and the actual improvement databases achieve after
applying the proposed physical designs. We present the dif-
ference as a percentage over the whole workload. Table 1
summarizes the used metrics. We denote as TO the work-
load execution time before the tuning phase, and as TAT

the workload execution time after the proposed design has
been adopted. We use IE to express the improvement esti-
mated by the physical designer and IA to show the actually
achieved improvement. We use the metrics to calculate the
following formulae:

IA = 100−
(
TAT

TO

)
× 100

TET = TO −
(IE × TO)

100

REE =
|TET − TAT |

TAT
× 100

AEE = |TET − TAT |

The relative estimation error (REE) demonstrates the pre-
dictability of a system, meaning the most accurate system
is the one having the lowest estimation error.

3.2 Workloads
In our experiments we study two workloads with different

characteristics. The first one contains 18 queries from the
TPC-H decision support benchmark [17] and we report re-
sults for scale factors (SF) 10 and 100 (data set size of 10GB
and 100GB). Originally, the TPC-H benchmark consists of
22 queries, while we exclude Q17, and Q20 to Q22 due to
their long execution in some of the DBMS. Additionally, to
narrow the vast search space in the experiments performed
on this benchmark, we restrict the designers to proposing
only indices. To increase the confidence in our results, we

Table 1: Metrics descriptions

Metric name Description

Original time (TO)
Workload execution time before
the tuning phase.

Estimated tuned time
(TET)

Physical designer’s estimated
execution time (with the new
physical design).

Actual tuned time
(TAT)

Actual workload execution time
(with the new physical design).

Estimated improve-
ment (IE)

Physical designer’s estimated
improvement for the proposed
design (%).

Actual improvement
(IA)

The actual improvement with
the proposed design (%).

Relative estimation
error (REE)

The relative error between TET

and TAT (%).
Absolute estimation
error (AEE)

The difference between TET and
TAT .

repeat the experiments with this workload 10 times using
different predicate values in queries obtained by calling the
QGen tool on the default TPC-H query templates. Every
reported data point is the average of multiple executions
with a standard deviation of less than 5%.

The second workload contains exploratory queries on the
NREF database [18]. The NREF database provides a col-
lection of protein sequence data from several genome se-
quencing projects. It contains 6 tables that together occupy
7GB. The query set consists of 400 combined SELECT and
UPDATE statements, from which the select-only workload
contains 200 statements.

3.3 Experimental Methodology
All experiments are conducted following the same algo-

rithm. First, we execute the queries in the original database
(before any tuning) and measure the workload execution
time, which we use as the baseline of our evaluation. Then,
we call the physical designers to suggest a new physical de-
sign. We call all physical designers with the same input for
every series of our experiments. In order to obtain more ac-
curate results from the query optimizer, we manually update
statistics after loading the data and applying referential in-
tegrity constraints, as well as after applying the designer’s
recommendations. Once the proposed designs are built in
the DBMS, all the queries are re-run and the improvement
and the predictability are calculated.

4. EXPERIMENTAL RESULTS
We conduct several experiments to evaluate the predictabil-

ity of designers and identify to what extent different pa-
rameters affect the estimates. In the experiments, we vary
the space budget for recommendations, the size of the in-
put database, and the number of queries in the workload
(considering the effect of updates as well).

4.1 Experimental Setup
All experiments are conducted using a 2.70GHz AMD

Opteron 2384 with two Quad-Core CPUs with 32GB of
RAM running Windows Server 2008 R2 (64bit). For storage,
we use two 750GB 7200rpm SATA hard disks, configured as
a RAID 0 with no caching allowed, and with an average I/O
data transfer rate of 90MB/s. Due to legal restrictions the
names of the used database systems are not disclosed here
and will be referred as System-A, System-B, and System-C.

All databases use 2GB of RAM unless stated otherwise and
in all our experiments we report cold runs with the caches
being emptied between the experiments.

4.2 The Designers’ Running Time
In this section, we report the time needed for the physical

designers to propose a new set of design structures.
TPC-H: In the set of experiments performed using the

TPC-H benchmark, the tuning time is not limited since our
goal is to achieve the best possible results. System-A and
System-B run for less than 3 min in all the experiments.
System-C has been the fastest in getting the response from
the designer, but also as we will see in the following subsec-
tions the least accurate. Despite the fact that the tuning
time is not limited, it only takes 3 sec to complete.

NREF: In the experiments performed using the NREF
data set, we set the time budget to 30 min, since the work-
load comprises 400 statements. The designers of System-A
and System-B exploit all the given time, while the one of
System-C again returns results in seconds. In this set of
experiments, we notice that System-C exceeds the available
space budget1, leading us to believe that it might skip the
merge phase in which designers merge design structures to-
gether to fulfil space constraints.

Typically, physical designers stop when the solution can-
not be further improved or if they exhaust the time budget.
In the latter case, it would be useful that physical designers
report the distance between the proposed and optimal solu-
tion, providing thereby the DBA with the feedback on the
quality of delivered solutions [11].

4.3 Impact of Space Budget
In this experiment, we examine the impact of the space

budget on the predictability of physical designers. We use
a TPC-H database of size 10GB and vary the space budget
from 5GB, and 15GB to unlimited space.

We observe that both System-A and System-B exploit al-
most the whole available space for recommendations. On the
other hand, System-C uses only 3.9GB and returns the same
proposal regardless of the space budget; thus, we report re-
sults only for this proposal. With the unlimited space bud-
get, System-A exploits 23GB, while System-B uses 17GB.

We do not observe any correlation between the space bud-
get, and the predictability of improvement the designers
deliver. Table 2 shows the results for the three systems.
System-A returns the most accurate estimations of the im-
provement. For the space budget of 5GB, it estimates an
improvement of 46%, while the database achieves an im-
provement of 57%. An REE is 26% over the whole workload.
By increasing the space budget, System-A becomes more ac-
curate making an REE only of 1.7% with 15GB, and 3.7%
with unlimited space. On the other hand, System-B ex-
hibits completely unstable behavior; an acceptable REE for
the space budget of 5GB, a completely wrong estimation of
the improvement for the space budget of 15GB that caused
performance degradation of 776% with an REE of 92%, and
an REE of 67% with unlimited space.

After applying the proposed designs, System-B with 15
GB space budget and System-C with 5GB space budget en-
counter severe performance degradation. For System-B, Q9
and Q16 run 75 and 5 times slower, while for System-C Q14
and Q19 are 44 and 12 times slower. Figure 1 plots the nor-

120GB is the allowed space budget, while System-C uses up
to 32GB of disk space

Table 2: Predictability when using the TPC-H 10GB

System-A System-B System-C

Metrics 5GB space 15GB space Unbounded space 5GB space 15GB space* Unbounded space 5GB space
IE (%) 45.94 63.46 73.32 21.16 37.29 39.9 10.62
IA (%) 57.13 64.09 74.27 30.96 -776.3 64.1 -219.23
REE (%) 26.09 1.74 3.7 14.2 92.84 67.37 72
* An error in the optimizer’s estimates results in 75 times longer execution time for Q9. For the rest of the

workload, an IA is 60%, which gives us an REE of 57%.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
1

0
Q

1
1

Q
1

2
Q

1
3

Q
1

4
Q

1
5

Q
1

6
Q

1
8

Q
1

9

N
o

rm
al

iz
ed

 e
xe

c.
 t

im
e

TPC-H Workload

Original
Tuned 5GB

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
1

0
Q

1
1

Q
1

2
Q

1
3

Q
1

4
Q

1
6

Q
1

8
Q

1
9
N

o
rm

al
iz

ed
 e

xe
c.

 t
im

e

TPC-H Workload

Original
Tuned 15GB

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Q1 Q3 Q5 Q7 Q9 Q11 Q13 Q15 Q18

N
o

rm
al

iz
ed

 e
xe

c.
 t

im
e

TPC-H Workload

Original

Tuned

~75x ~5x ~44x ~12x

(a) System B

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
1

0
Q

1
1

Q
1

2
Q

1
3

Q
1

4
Q

1
5

Q
1

6
Q

1
8

Q
1

9

N
o

rm
al

iz
ed

 e
xe

c.
 t

im
e

TPC-H Workload

Original
Tuned 5GB

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
1

0
Q

1
1

Q
1

2
Q

1
3

Q
1

4
Q

1
6

Q
1

8
Q

1
9
N

o
rm

al
iz

ed
 e

xe
c.

 t
im

e

TPC-H Workload

Original
Tuned 15GB

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Q1 Q3 Q5 Q7 Q9 Q11 Q13 Q15 Q18

N
o

rm
al

iz
ed

 e
xe

c.
 t

im
e

TPC-H Workload

Original

Tuned

~75x ~5x ~44x ~12x

(b) System C

Figure 1: Relative improvement with TPC-H SF10

malized execution time for System-B and System-C in these
cases. For System-B, we observe that all others queries in
the workload benefit from the new physical design. Never-
theless, the longer execution times of Q9 and Q16 prolonged
the overall execution 8 times (from half an hour to 4 hours).

The problem appears due to errors in the optimizer’s car-
dinality estimates that favor an index seek over a full ta-
ble scan. The optimizer opts for such a plan because, by
employing the attribute value independence assumption, it
underestimates the size of intermediate results. The effect
of the assumption is presented in more detail in Section 4.7.
We are certainly not the first to identify the problem of
cardinality errors and various techniques have already been
proposed in literature [15, 14, 7]. Nevertheless, database
systems still use the assumption to simplify cardinality com-
putation, and as this heuristic is often violated in practice,
it results in significant query optimizers’ errors [3].

Discussion. If we exclude the mentioned extreme cases,
we notice that the designers’ predictions are quite conserva-
tive in comparison with the actual improvement databases
achieve. One might claim that this is not a problem, as long
as new designs improve performance. We do not agree, since
an inaccurate estimation regarding the usefulness of a pro-
posed design might mislead the DBA and discourage them
completely from implementing such a design.

4.4 Impact of Database Size
To examine the influence of the database size on the pre-

dictability of physical designers we conduct additional ex-
periments in which we increase the size of the TPC-H data
set from 10GB to 100GB. Proportionally, we increase the
bufferpool size from 2GB to 20GB, and vary the space bud-
get from 50GB, and 150GB to unlimited space.

Similar to the previous experiment, we do not observe
a trend in predicting improvement. Figure 2 shows how
the REE changes as we increase the recommendation space
budget. System-A starts with an REE of 46% and further
improves its predictions with an REE of 23% in the second
and 20% in the third experiment. System-A is the only sys-
tem that actually achieves performance improvement after
implementing the proposed design; an improvement of 61%

in the first, 71% in the second and 75% in the third ex-
periment. System-B, due to several long running queries in
each experiment, ends up with 15% worse performance in
the first case, and 25% and 6% in the second and third case.
The reason for performance degradation again lies in the op-
timizer’s cardinality errors that favor index usage over full
table scans. Due to the same reason, System-C finishes its
execution in twice the time in comparison with the baseline
in all three experiments, causing an REE of 68%.

We additionally note that despite the fact physical design-
ers can substantially boost performance, after some point
they can further improve performance only to a marginal
extent in comparison with the space they need to use or the
time that takes to create all proposed structures2. Figure
3 shows the percentage of improvement System-A achieves
when increasing the space budget for the TPC-H workload.
With the initial budget, the designer achieves an improve-
ment of 57% and 61%, for SF 10 and 100 respectively. When
adding the additional space budget equal to the database
size, the designer proposes recommendations that further
improve performance for another 7% in the former and 10%
in the latter case. For improving the design for another 10%
in the case of SF 10 and 5% in the case of SF 100, the de-
signer needs additional 8GB and 68GB respectively. Clearly,
there is a threshold after which the trade-off between achiev-
ing further improvement at the expense of using much more
space is not worth. Thus, the feedback on how far the cur-
rent solution is from the optimal or the information about
how many resources the designer needs for achieving addi-
tional improvement are attributes that commercial systems
vendors should consider including in their tools.

4.5 Impact of Workload Size
In this experiment, we examine the physical designers’

behaviour when we increase the size of the workload. We
use a select-only synthetic workload, based on exploratory
queries on the NREF data set [18]. The workload comprises
a set of two, three and four-table joins, in addition to simple

2It takes nearly 16 hours to create a configuration proposed
by System-B for SF100, when the space budget is unlimited.

Tpch 100

0

20

40

60

50GB 150GB ∞

R
EE

(%
)

Space budget

System A

System B

System C

Figure 2: REE with TPC-H SF100

range queries that read data from just one table and filter
it by several predicates. Throughout the experiments we
progressively increase the workload size using 20, 50, 100
and 200 queries between different runs. The time budget for
designers is set to 30 minutes, and the space budget to 20GB.
In the round of experiments conducted on the NREF data
set, we do not set any restrictions on the possible physical
design structures, i.e., in addition to indices, partitioning
and views may also be considered.

Table 3 summarizes the results for the current and the
following section. System-A improves performance after ap-
plying the proposed designs, making a relative error between
20% and 45% throughout the experiments. For the same set-
ting, the proposed designs bring improvement to System-C
with a relative error between 42% and 87%. System-B de-
grades performance in the majority of experiments, again
because it proposes indices whose usefulness is overstated.

Discussion. Unlike the experiment described in Section
4.3, in this experiment we notice exactly the opposite behav-
ior. While the tools are more conservative in the case of the
TPC-H benchmark, they are too optimistic in this experi-
ment, since they estimate higher improvements in compari-
son with what they achieve. Thus, in addition to being in-
accurate in their estimations, the tools are also inconsistent
across different runs, making it harder for us to anticipate
the potential performance improvement we may gain.

4.6 Impact of Updates
In this experiment we augment the select-only workload

with a set of update statements on protein and neighbor-
ing seq tables. Our goal is to exercise the cost model of
design tools, since now they have to consider the trade-off
between proposing indices that improve performance and
maintaining these structures. This can be considered as the
hardest case for physical designers.

The results are presented in Table 3 (column 400). System-
B is not able to find a design that will improve performance,
therefore its error is 0%. System-A and System-C propose
a set of structures with an estimated improvement of 58%
in the first, and 2% in the second case. Nevertheless, both
systems actually deteriorate performance after applying the
designs. The reason lies in the long running update opera-
tions, since now systems have to reorganize indices created
on both aforementioned tables whenever an update opera-
tion occurs. System-A in this experiment is the least accu-
rate with an REE of 65%. System-C is more careful and
proposes fewer indices, while it concentrates more on other
design structures (e.g. views), which results in an REE of
9%. Nevertheless, we notice that System-C does not actu-
ally respect the space constraints. In this experiment it uses
32GB of space, while the limit is set to 20GB.

Discussion. From this and the set of experiments per-
formed using the TPC-H benchmark, we notice that indices

ActualImprovement

0

20

40

60

80

100

0 0.5 1 1.5 2 2.5

I A
(%

)

[Space budget/DB size] ratio

10 GB DB Size

100 GB DB Size

Figure 3: System-A - Actual improvement when increasing
the space budget

can have both positive and negative impact on performance.
They can boost performance (up to 75% of improvement in
our experiments), but can also significantly degrade perfor-
mance if the overhead of maintaining them is not modeled
accurately, or if the optimizer under-estimates the size of in-
termediate results and hence decides to use indices in queries
that are low selective, leading to substantial overheads that
random I/O accesses bring.

4.7 Impact of Statistics
A harmful effect of the attribute value independence as-

sumption on the quality of proposed designs is already men-
tioned in Sections 4.3 and 4.7. The assumption prolongs
execution time of the majority of experiments conducted
on the select-only NREF workload on System-B. A typical
query from the workload is shown below:

SELECT p_name FROM protein
WHERE seq_length BETWEEN 121 AND 3932
AND table1.last_updated

BETWEEN ’12/21/2001’ AND ’02/11/2002’;

Even with this simple query we can see a detrimental effect
of the attribute value independence assumption. Estimated
cardinality of this query is 20.595, while the actual cardi-
nality is 179.763, an order of magnitude more. The wrong
estimate mislead the optimizer that an index seek followed
by a table lookup for the rest of the columns (not covered
by the index) by RowIDs is the cheapest solution, while in
reality a full table scan would be much faster. The same sit-
uation appears in Q19 of the TPC-H benchmark performed
on System-C, where the query optimizer, due to the same
reason, makes the cardinality error underestimating the size
of intermediate results by three orders of magnitude. As a
consequence it decides to use a nested-loop join between ta-
bles LINEITEM and PART with three orders of magnitude
more tuples than estimated, which finally results in 12 times
longer execution time.

Another surprising observation is that for System-B and
C performance-wise it is better not to have statistical in-
formation at all in some cases, than to have it with the in-
dependence assumption. Without statistics on indices, the
optimizer chooses the safe option which is a full table scan,
and hence it chooses more efficient execution plans. In addi-
tion, we notice that the reason why System-A does not fall
into this trap is because it proposes creation of statistics on
all joint columns from the workload. We tried to manually
perform the same task on System-B, unfortunately without
success, since the cardinality errors remained. System-C to
our knowledge does not support such a command.

Discussion. From everything mentioned so far, it can be
concluded that statistics have a major impact on the quality
of execution plans and consequently on the predictability of
physical designers.

Table 3: Predictability when increasing workload size

System A System B System C

Metrics 20 50 100 200 400* 20 50 100 200 400 20 50 100 200 400
IE (%) 94.11 90.29 92.3 81.62 58.62 73.66 50.55 37.39 35.75 0 95.75 90.12 92.35 68.8 2.23
IA (%) 91.16 87.26 85.7 77.16 -18.3 18.15 -69.6 -60.69 -91.02 0 64.75 53.36 66.62 45.28 -8.13
REE (%) 33.35 23.75 46.15 19.53 65.02 67.82 70.83 61.03 66.36 0 87.93 78.81 77.1 42.98 9.58
* The number of statements in the workload. 400 represents the update-intensive workload.

5. DISCUSSION
We have seen the substantial influence of the query opti-

mizer’s cardinality errors on the quality of proposed designs.
Nevertheless, cardinality errors are not only attributed to
the presence of joint data distributions. We additionally no-
tice the cases when cardinality errors are high without joint
distributions, for instance in queries with the ”LIKE” pred-
icate that filters character values. Furthermore, even with
accurate cardinality estimates, the cost model sometimes fa-
vors an index seek and a table lookup, which is much more
expensive than a simple full table scan (e.g. 44 times more
in the case of the TPC-H Q14 executed on System-C). The
latter implies that the cost model itself has to be refined. For
instance, the ratio between random and sequential reads has
to be modeled more accurately.

Another concern relates to the user satisfaction when us-
ing physical designers. For instance, we have noticed cases
when designs are proposed with syntax errors, which caused
compilation errors. In the case of System-C, we have even
seen how proposed designs violate space constraints, which
all can deter users from using the tools.

6. CONCLUSION
Since databases are usually part of larger systems, the

predictability in their behaviour is an important feature.
Changing the physical design is a heavyweight operation,
thus some level of guarantee is certainly needed. Promising
improvement that eventually will not be obtained may cause
users frustration and ultimately discourage them from using
the tools. Therefore, designers have to deliver solutions with
a high level of certainty, being hence trustworthy to imple-
ment.

In this paper, we evaluate the predictability of physical de-
signers of three commercial database systems. We explore
whether what we receive as the output of the tuning process
corresponds to the improvement we gain after applying the
proposed configuration. Our results show that the systems
are not only inaccurate in their estimates, but are also incon-
sistent and hence even more unpredictable across different
experiments raising questions regarding their trustworthi-
ness. Furthermore, even with these rather simplistic work-
loads, we see a detrimental effect of the query optimizer’s
cardinality errors on the quality of proposed designs. In
addition, update-intensive workloads seem to be a stepping-
stone of physical designers that could not model accurately
the trade-off between the improvement that proposed struc-
tures bring and the cost of maintaining them. Hence, we ar-
gue that in the light of the predictability of those tools there
is still significant room for improvement, and a plethora
of already published academic work gives some directions
worth following and integrating in the physical designers.

7. ACKNOWLEDGMENTS
We would like to thank the DIAS laboratory members and

the anonymous reviewers for their valuable feedback on the

previous version of this paper, which substantially improved
the current presentation.

8. REFERENCES
[1] A. Aboulnaga, P. Haas, M. Kandil, S. Lightstone,

G. Lohman, V. Markl, I. Popivanov, and V. Raman.
Automated statistics collection in DB2 UDB. In
VLDB, 2004.

[2] S. Agrawal, S. Chaudhuri, L. Kollar, A. Marathe,
V. Narasayya, and M. Syamala. Database Tuning
Advisor for Microsoft SQL Server 2005. In VLDB,
2004.

[3] B. Babcock and S. Chaudhuri. Towards a Robust
Query Optimizer: A Principled and Practical
Approach. In SIGMOD, 2005.

[4] N. Bruno. A critical look at the TAB benchmark for
physical design tools. SIGMOD Rec., 36:7–12, 2007.

[5] S. Chaudhuri and V. Narasayya. AutoAdmin ”what-if”
index analysis utility. In SIGMOD, 1998.

[6] S. Chaudhuri and V. Narasayya. Self-tuning database
systems: a decade of progress. In VLDB, 2007.

[7] C. M. Chen and N. Roussopoulos. Adaptive selectivity
estimation using query feedback. In SIGMOD, 1994.

[8] S. Christodoulakis. Implications of certain
assumptions in database performance evaluation.
ACM Trans. Database Syst., 9:163–186, 1984.

[9] M. P. Consens, D. Barbosa, A. Teisanu, and
L. Mignet. Goals and benchmarks for autonomic
configuration recommenders. In SIGMOD, 2005.

[10] B. Dageville, D. Das, K. Dias, K. Yagoub, M. Zait,
and M. Ziauddin. Automatic SQL tuning in Oracle
10g. In VLDB, 2004.

[11] D. Dash, N. Polyzotis, and A. Ailamaki. CoPhy: a
scalable, portable, and interactive index advisor for
large workloads. PVLDB, 4:362–372, 2011.

[12] S. Finkelstein, M. Schkolnick, and P. Tiberio. Physical
database design for relational databases. ACM Trans.
Database Syst., 13:91–128, 1988.

[13] K. E. Gebaly and A. Aboulnaga. Robustness in
automatic physical database design. In EDBT, 2008.

[14] P. J. Haas and A. N. Swami. Sequential sampling
procedures for query size estimation. In SIGMOD,
1992.

[15] Y. E. Ioannidis. The History of Histograms
(abridged). In VLDB, 2003.

[16] K. Schnaitter and N. Polyzotis. A Benchmark for
Online Index Selection. In ICDE, 2009.

[17] TPC. Tpc-h benchmark. http://www.tpc.org/tpch/.

[18] C. H. Wu and et al. The Protein Information
Resource: an integrated public resource of functional
annotation of proteins. Nucleic Acids Research, 2002.

[19] D. C. Zilio, J. Rao, S. Lightstone, G. M. Lohman,
A. J. Storm, C. Garcia-Arellano, and S. Fadden. DB2
Design Advisor: Integrated Automatic Physical
Database Design. In VLDB, 2004.

