Function Interpolation for Learned Index Structures

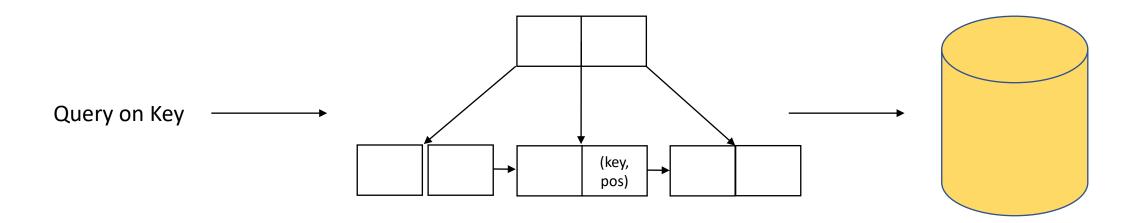
Naufal Fikri Setiawan, Benjamin I.P. Rubinstein, Renata Borovica-Gajic

University of Melbourne

Acknowledgement: CORE Student Travel Scholarship

Querying data with an index

- Indexes are external structures used to make lookups faster.
- B-Tree indexes are created on databases where the keys have an ordering.



On Learned Indexes

- An experiment by Kraska, et al. [*] to replace range index structure (i.e. B-Tree) with neural networks to "predict" position of an entry in a database.
 - Reduce $O(\log n)$ traversal time to O(1) evaluation time.
- Indexing is a problem on learning how data is distributed.
- Aim: To explore the feasibility of an alternative statistical tool: **polynomial interpolation** in indexing.

Kraska, Tim, et al. "The case for learned index structures." *Proceedings of the 2018 International Conference on Management of Data*. 2018.

Mathematical View on Indexing

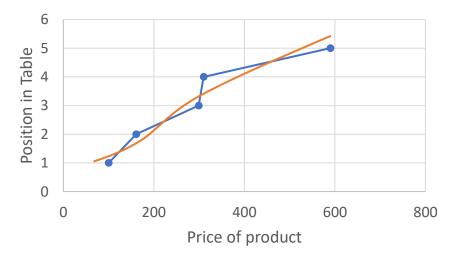
		F(key) = Indexing Function on		
Product	Price (Key)	Price		
Product A	100			
Product X	161	4 Japle		
Product L	299	i tion i no i no i no i no i no i no i n		
Product D	310	L L L L L L L L L L L L L L L L L L L		
Product G	590	0 200 400 600 800		
		Price of product		

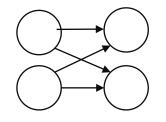
 $\Gamma(1,\ldots)$ Indexing $\Gamma(1,\ldots,\infty)$

An index is a function $f: U \mapsto N$ that takes a query and return the position.

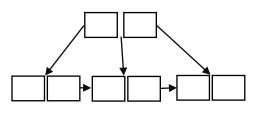
So... we can build a model to predict them!

F(x) = Indexing Function





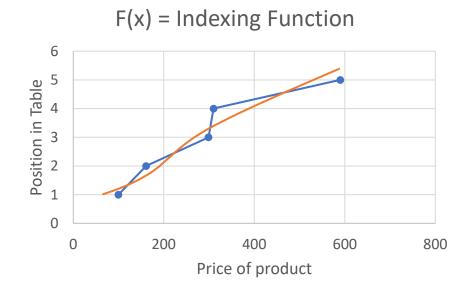
Neural Networks



 $f(x) \approx \sum a_i x^i$

Polynomial Models

Polynomial Models - Preface



For a chosen degree n

$$position \approx a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

Use two different interpolation methods to obtain a_i :

- Bernstein Polynomial Interpolation
- Chebyshev Polynomial Interpolation

Meet our Models

Bernstein Interpolation Method

$$\sum_{i=0}^{N} \frac{\alpha_i}{n} \binom{N}{i} x^i (1-x)^{N-i}$$

Model parameters $\langle \alpha_1, \alpha_2, \alpha_3, \cdots, \alpha_N \rangle$

Where

$$\alpha_i = f\left(\frac{\iota}{N}\right)$$

And f is the function we want to approximate, scaled to [0,1].

In memory: only need to store the coefficients

$$\alpha_i \cdot \binom{N}{i}$$

Meet our Models

Chebyshev Interpolation Method

 $\sum_{i=0}^{N} \alpha_i T_i(x)$

$$T_0(x) = 1$$

$$T_1(x) = x$$

$$T_n(x) = 2xT_{n-1}(x) - T_{n-2}(x)$$

Coefficients given by Discrete Chebyshev Transform

$$\alpha_{i} = \frac{p_{i}}{N} \sum_{k=0}^{N-1} \left[f\left(-\cos\left(\frac{\pi}{N}\left(k + \frac{1}{2}\right)\right) \right) \cdot \cos\left(\frac{i\pi}{N}\left(N + k + \frac{1}{2}\right)\right) \right]$$

 $p_0 = 1, p_k = 2 \text{ (if } k > 0)$

Domain is [-1, 1]

Indexing as CDF Approximation

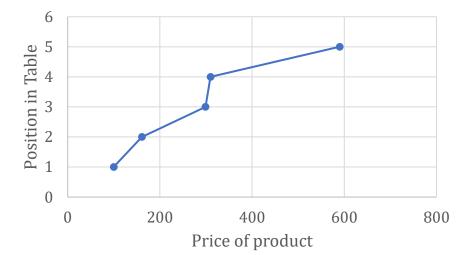
If we:

• Pre-sort the values in the table, we get the following equation:

 $F(key) = P(x \le key) \times N$

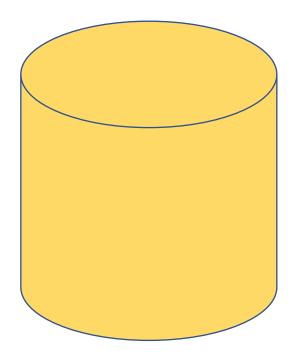
Our polynomial models need to simply predict the CDF, with key rescaled to the interpolation domain.

F(x) = Indexing Function



A Query System

Data is not necessarily sorted in DB



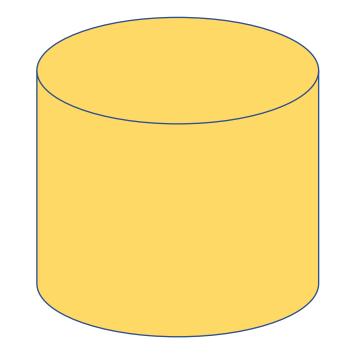
Query Model Step 1: Creation of Data Array

A Query System

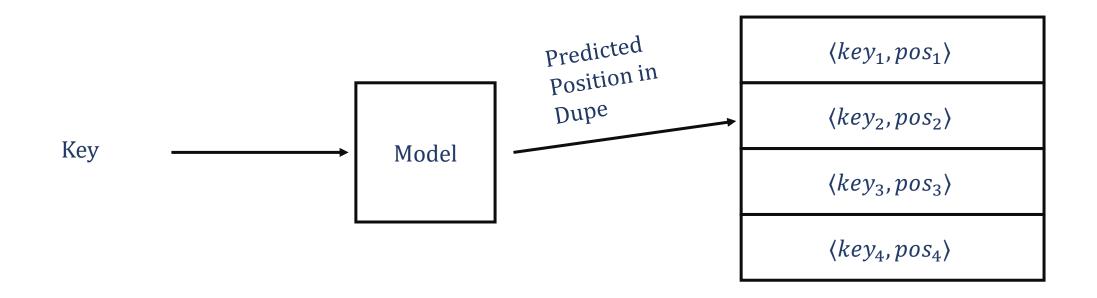
Sorted Data Dupe (A)

$\langle key_1, pos_1 \rangle$
$\langle key_2, pos_2 \rangle$
$\langle key_3, pos_3 \rangle$
$\langle key_4, pos_4 \rangle$

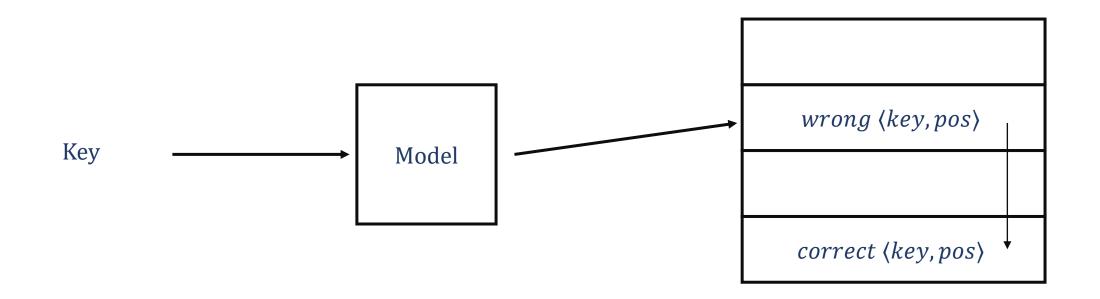
Data is not necessarily sorted in DB



A Query System



Query Model Step 1: Predict position



Query Model Step 2: Error correction

Experiment Setup

- Created random datasets with multiple distributions as keys:
 - Normal, Log-Normal, and Uniform.
- Each distribution:
 - 500k, 1M, 1.5M, 2M rows.
- We test the performance of each index
 - NN, B-Tree, polynomial
- Hardware setup:
 - Core i7, 16GB of RAM.
 - Python 3.7 on GCC running on Linux.
 - PyTorch for Neural Network purposes.
 - No form of GPU use.

Benchmark Neural Network

- Neural Network:
 - 1hr benchmark training time.
 - 2 hidden layers x 32 neurons.
 - ReIU activation.

Index Creation / "Training" Time

Model Type	Creation Time
B-Tree	34.57 seconds
Bernstein(25) Polynomial	3.366 seconds
Chebyshev(25) Polynomial	3.809 seconds
Neural Network Model	1hr (benchmark)

- Polynomial models are created faster than B-Trees.
- Polynomial models do not require any hyperparameter tuning.
- NNs, however, can be incrementally trained.

Factor of 10 creation time reduction over B-Trees

Model Prediction Time

Model Type	Prediction Time (nanoseconds)			
	Normal	LogNormal	Uniform	
B-Tree	24.4	40.1	41.5	
Bernstein(25) Polynomial	277	336	166	
Chebyshev(25) Polynomial	25.9	31.7	16.4	
Neural Network Model	406	806	148	

Model prediction time for 2 million rows.

Polynomial models are able to predict faster than NNs.

Model Accuracy

Model Type	Root Mean Squared Positional Error			
	Normal	LogNormal	Uniform	
B-Tree	N/A			
Bernstein(25) Polynomial	9973.67	39566.59	62.58	
Chebyshev(25) Polynomial	57.14	474.91	26.39	
Neural Network Model	105.84	711.12	22.67	

Average error for 2 million rows.

Chebyshev Models are ~50% more accurate

Total Query Speed

Model Type	Average Query Times (nanoseconds)			
	Normal	LogNormal	Uniform	
B-Tree	31.5	46.0	56.3	
Chebyshev(25) Polynomial	62.1	751	40.2	
Bernstein(25) Polynomial	8080	11800	192	
Neural Network Model	402	1100	516	

Chebyshev Models are 30% - 90% faster at querying.

Memory Usage

Model Type	Size of Database (in Entries)				
	500k Entries	1M Entries	1.5M Entries	2M Entries	
B-Tree	33.034 MB	66.126 MB	99.123 MB	132.163 MB	
Neural Network	210.73 kB	210.73 kB	210.73 kB	210.73 kB	
Bernstein(25) Polynomial	1.8kB	1.8kB	1.8kB ↑	1.8kB	
Chebyshev(25) Polynomial	1.8kB	1.8kB	1.8kB	1.8kB	

99.4% Reduction from B-Trees

99.3% reduction from Neural Network Model

Main Key Insight

- "Indexing" is better interpreted as less of a learning problem and more of a fitting problem. Where **overfitting** is advantageous.
- Learning: separate training and test data.
- Fitting: same training and test data.

Conclusion

- We advocate for the use of function interpolation as a 'learned index' due to the following benefits:
 - No hyperparameter tuning.
 - Fast creation time on a CPU-only environment.
 - Provides a higher compression rate vs. Neural Networks and definitely vs. B-Trees.