
Function Interpolation for 
Learned Index Structures

Naufal Fikri Setiawan, 
Benjamin I.P. Rubinstein,
Renata Borovica-Gajic

University of Melbourne

Acknowledgement: CORE Student Travel Scholarship



Querying data with an index

• Indexes are external structures used to make lookups faster.

• B-Tree indexes are created on databases where the keys have an 
ordering.

(key, 
pos)

Query on Key

𝑘𝑒𝑦 → 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛



On Learned Indexes

• An experiment by Kraska, et al. [*] to replace range index structure (i.e. B-
Tree) with neural networks to “predict” position of an entry in a database.

• Reduce 𝑂 log𝑛 traversal time to 𝑂 1 evaluation time.

• Indexing is a problem on learning how data is distributed.

• Aim: To explore the feasibility of an alternative statistical tool: polynomial 

interpolation in indexing.

Kraska, Tim, et al. "The case for learned index structures.“
Proceedings of the 2018 International Conference on Management of Data. 2018.



Mathematical View on Indexing

Product Price (Key)

Product A 100

Product X 161

Product L 299

Product D 310

Product G 590

An index is a function 𝒇:𝑼 ↦
𝑵 that takes a query and return the 
position.

0

1

2

3

4

5

6

0 200 400 600 800

P
o

si
ti

o
n

 in
 T

ab
le

Price of product

F(key) = Indexing Function on 
Price



So... we can build a model to predict them!

Neural Networks Polynomial ModelsTrees!

𝑓 𝑥 ≈ ∑𝑎𝑖𝑥
𝑖

0

1

2

3

4

5

6

0 200 400 600 800

Po
si

ti
o

n
 in

 T
ab

le

Price of product

F(x) = Indexing Function



Polynomial Models - Preface

0

1

2

3

4

5

6

0 200 400 600 800

Po
si

ti
o

n
 in

 T
ab

le

Price of product

F(x) = Indexing Function

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ≈ 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 +⋯+ 𝑎𝑛𝑥

𝑛

Use two different interpolation methods 
to obtain 𝑎𝑖:
• Bernstein Polynomial Interpolation
• Chebyshev Polynomial Interpolation

For a chosen degree 𝑛



Meet our Models

Bernstein Interpolation Method

෍

𝑖=0

𝑁

𝛼𝑖
𝑁

𝑖
𝑥𝑖 1 − 𝑥 𝑁−𝑖

Model parameters ⟨𝛼1, 𝛼2, 𝛼3, ⋯ , 𝛼𝑁⟩

Where

𝛼𝑖 = 𝑓
𝑖

𝑁

And 𝑓 is the function we want to 
approximate, scaled to [0,1].

In memory: only need to store the coefficients

𝛼𝑖 ⋅
𝑁

𝑖



Meet our Models

Chebyshev Interpolation Method

෍

𝑖=0

𝑁

𝛼𝑖𝑇𝑖(𝑥)

𝑇0 𝑥 = 1
𝑇1 𝑥 = 𝑥

𝑇𝑛 𝑥 = 2𝑥𝑇𝑛−1 𝑥 − 𝑇𝑛−2(𝑥)

𝛼𝑖 =
𝑝𝑖
𝑁
෍

𝑘=0

𝑁−1

𝑓 − cos
𝜋

𝑁
𝑘 +

1

2
⋅ cos

𝑖𝜋

𝑁
𝑁 + 𝑘 +

1

2

𝑝0 = 1, 𝑝𝑘 = 2 (if 𝑘 > 0)

Coefficients given by Discrete Chebyshev Transform

Domain is [−1, 1]



Indexing as CDF Approximation

If we:

• Pre-sort the values in the table, we 

get the following equation:

0

1

2

3

4

5

6

0 200 400 600 800

P
o

si
ti

o
n

 in
 T

ab
le

Price of product

F(x) = Indexing Function

𝐹 𝑘𝑒𝑦 = 𝑃 𝑥 ≤ 𝑘𝑒𝑦 × 𝑁

Our polynomial models need to simply 

predict the CDF, with key rescaled to 

the interpolation domain.



A Query System

Query Model Step 1: Creation of Data Array

Data is not necessarily sorted in DB



A Query System

⟨𝑘𝑒𝑦1, 𝑝𝑜𝑠1⟩

⟨𝑘𝑒𝑦2, 𝑝𝑜𝑠2⟩

⟨𝑘𝑒𝑦3, 𝑝𝑜𝑠3⟩

⟨𝑘𝑒𝑦4, 𝑝𝑜𝑠4⟩

Sorted Data Dupe (A)

Data is not necessarily sorted in DB



A Query System

Model

⟨𝑘𝑒𝑦1, 𝑝𝑜𝑠1⟩

⟨𝑘𝑒𝑦2, 𝑝𝑜𝑠2⟩

⟨𝑘𝑒𝑦3, 𝑝𝑜𝑠3⟩

⟨𝑘𝑒𝑦4, 𝑝𝑜𝑠4⟩

Key

Query Model Step 1: Predict position



A Query System

Model

𝑤𝑟𝑜𝑛𝑔 ⟨𝑘𝑒𝑦, 𝑝𝑜𝑠⟩

𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ⟨𝑘𝑒𝑦, 𝑝𝑜𝑠⟩

Key

Query Model Step 2: Error correction



Experiment Setup

• Created random datasets with multiple distributions as keys:
• Normal, Log-Normal, and Uniform.

• Each distribution:
• 500k, 1M, 1.5M, 2M rows.

• We test the performance of each index 
• NN, B-Tree, polynomial

• Hardware setup:
• Core i7, 16GB of RAM.
• Python 3.7 on GCC running on Linux.
• PyTorch for Neural Network purposes.
• No form of GPU use.



Benchmark Neural Network

• Neural Network:
• 1hr benchmark training time.

• 2 hidden layers x 32 neurons.

• RelU activation.



Index Creation / “Training” Time

Model Type Creation Time

B-Tree 34.57 seconds

Bernstein(25) Polynomial 3.366 seconds

Chebyshev(25) Polynomial 3.809 seconds

Neural Network Model 1hr (benchmark)

• Polynomial models are created 
faster than B-Trees.

• Polynomial models do not require 
any hyperparameter tuning.

• NNs, however, can be 
incrementally trained.

Factor of 10 creation time reduction over B-Trees



Model Type Prediction Time (nanoseconds)

Normal LogNormal Uniform

B-Tree 24.4 40.1 41.5

Bernstein(25) Polynomial 277 336 166

Chebyshev(25) Polynomial 25.9 31.7 16.4

Neural Network Model 406 806 148

Model Prediction Time

Model prediction time for 2 million rows.

Polynomial models are able to predict faster than NNs.



Model Type Root Mean Squared Positional Error

Normal LogNormal Uniform

B-Tree N/A

Bernstein(25) Polynomial 9973.67 39566.59 62.58

Chebyshev(25) Polynomial 57.14 474.91 26.39

Neural Network Model 105.84 711.12 22.67

Model Accuracy

Average error for 2 million rows. Chebyshev Models are ~50%
more accurate



Total Query Speed

Model Type Average Query Times (nanoseconds)

Normal LogNormal Uniform

B-Tree 31.5 46.0 56.3

Chebyshev(25) Polynomial 62.1 751 40.2

Bernstein(25) Polynomial 8080 11800 192

Neural Network Model 402 1100 516

Chebyshev Models are 30% - 90% faster at querying.



Memory Usage

Model Type Size of Database (in Entries)

500k Entries 1M Entries 1.5M Entries 2M Entries

B-Tree 33.034 MB 66.126 MB 99.123 MB 132.163 MB

Neural Network 210.73 kB 210.73 kB 210.73 kB 210.73 kB

Bernstein(25) 
Polynomial

1.8kB 1.8kB 1.8kB 1.8kB

Chebyshev(25) 
Polynomial

1.8kB 1.8kB 1.8kB 1.8kB

99.4% Reduction
from B-Trees

99.3% reduction from
Neural Network Model



Main Key Insight

• “Indexing” is better interpreted as less of a learning problem and 
more of a fitting problem. Where overfitting is advantageous.

• Learning: separate training and test data.

• Fitting: same training and test data.



Conclusion

• We advocate for the use of function interpolation as a ‘learned index’ 
due to the following benefits:

• No hyperparameter tuning.

• Fast creation time on a CPU-only environment.

• Provides a higher compression rate vs. Neural Networks and definitely vs. B-
Trees.


