Function Interpolation for
[.earned Index Structures

Naufal Fikri Setiawan,
Benjamin I.P. Rubinstein,
Renata Borovica-Gajic

THE UNIVERSITY OF

MELBOURNE

University of Melbourne

Acknowledgement: CORE Student Travel Scholarship

Querying data with an index

* Indexes are external structures used to make lookups faster.
* B-Tree indexes are created on databases where the keys have an

ordering.
(key,

pOS) ; v

Query on Key

key — position

On Learned Indexes

« An experiment by Kraska, et al. [*] to replace range index structure (i.e. B-
Tree) with neural networks to “predict” position of an entry in a database.

* Reduce 0(logn) traversal time to 0(1) evaluation time.

* Indexing Is a problem on learning how data is distributed.

« Aim: To explore the feasibility of an alternative statistical tool: polynomial
interpolation In iIndexing.

Kraska, Tim, et al. "The case for learned index structures.”
Proceedings of the 2018 International Conference on Management of Data. 2018.

Mathematical View on Indexing

Product A
Product X
Product L
Product D
Product G

100
161
299
310
590

F(key) = Indexing Function on

Price

Position in Table
S = N W S U1 O

o

200 400
Price of product

An index is a function f: U -
N that takes a query and return the
position.

600

800

So... we can build a model to predict them!

F(x) = Indexing Function

/.

—
A

//

4
200 400 600 800
Price of product
% / } \ f(x) = Ta;x!
> > ||

Neural Networks Trees! Polynomial Models

Position in Table
o = N w SN Ul (@)

o

Polynomial Models - Preface

F(x) = Indexing Function For a chosen degree n

6
Q > /‘
< 4 r/ ., u 2 n
£, position = ay + a1 X + a,x* + -+ a,x
5’ -
3 //
a1 4

0

0 200 400 600 800

Use two different interpolation methods
to obtain a;:

* Bernstein Polynomial Interpolation
* Chebyshev Polynomial Interpolation

Price of product

Meet our Models

Bernstein Interpolation Method

. a; (]Z,)xi(l — x)N-t

N
1=0

Model parameters (a, a,, az, -+, ay)

Where _
[
«=£(3)

And f is the function we want to
approximate, scaled to [0,1].

In memory: only need to store the coefficients

()

Meet our Models

Chebyshev Interpolation Method

N
z a;T; (x)

=0

To(x) =1
T:(x) =x
Tn(x) = 2xT,_1(x) — T2 (x)

Coefficients given by Discrete Chebyshev Transform

N—-
:p_z
l N -

(-enlile3)) o[

Domainis [—1, 1]

I
N

)

Indexing as CDF Approximation

If we: F(x) = Indexing Function
* Pre-sort the values in the table, we 6
get the following equation: 25
S 4
o
£,
F(key) = P(x < key) XN % .
|
0
0 200 400 600 800
Our polynomial models need to simply Price of product

predict the CDF, with key rescaled to
the interpolation domain.

A Query System

Data is not necessarily sorted in DB

N
N

~_

Query Model Step 1: Creation of Data Array

A Query System

Data is not necessarily sorted in DB

Sorted Data Dupe (A) /\
(keyy, posy) .

(key,,pos;)

(keys, poss)

(key,, poss) w

A Query System

Key

predicted
position I
Dup€

\ 4

Query Model Step 1: Predict position

(key,,posy)

(key,,posy;)

(keys, poss)

(keys, posy)

A Query System

Key

Query Model Step 2: Error correction

wrong (key, pos)

<«

correct {(key,pos)

Experiment Setup

Created random datasets with multiple distributions as keys:
* Normal, Log-Normal, and Uniform.

Each distribution:
500k, 1M, 1.5M, 2M rows.

We test the performance of each index
* NN, B-Tree, polynomial

Hardware setup:
« Corei7, 16GB of RAM.
* Python 3.7 on GCC running on Linux.
» PyTorch for Neural Network purposes.
* No form of GPU use.

Benchmark Neural Network

* Neural Network:
* 1hr benchmark training time.
* 2 hidden layers x 32 neurons.
* RelU activation.

Index Creation / “Training” Time

 Polynomial models are created
Model Type faster than B-Trees.
B-Tree 34.57 seconds

Bernstein(25) Polynomial 3.366 seconds o Polynomial models do not require

any hyperparameter tuning.
Chebyshev(25) Polynomial 3.809 seconds y lyperp &

Neural Network Model 1hr (benchmark)

« NNs, however, can be
incrementally trained.

Factor of 10 creation time reduction over B-Trees

Model Prediction Time

Model Type Prediction Time (nanoseconds)

Normal LogNormal Uniform
B-Tree 24.4 40.1 41.5
Bernstein(25) Polynomial 277 336 166
Chebyshev(25) Polynomial 25.9 31.7 16.4
Neural Network Model 406 806 148

Model prediction time for 2 million rows.

Polynomial models are able to predict faster than NNs.

Model Accuracy

Model Type Root Mean Squared Positional Error

Normal LogNormal Uniform
B-Tree N/A
Bernstein(25) Polynomial 9973.67 39566.59 62.58
Chebyshev(25) Polynomial 57.14 474.91 26.39
Neural Network Model 105.84 711.12 \ 22.67

\

Average error for 2 million rows. Chebyshev Models are ~50%
more accurate

Total Query Speed

Model Type Average Query Times (nanoseconds)

Normal LogNormal Uniform
B-Tree 31.5 46.0 56.3
Chebyshev(25) Polynomial 62.1 751 40.2
Bernstein(25) Polynomial 8080 11800 192
Neural Network Model 402 1100 516

Chebyshev Models are 30% - 90% faster at querying.

Memory Usage

Model Type Size of Database (in Entries)

500k Entries 1M Entries 1.5M Entries 2M Entries
B-Tree 33.034 MB 66.126 MB 99.123 MB 132.163 MB
Neural Network 210.73 kB 210.73 kB 210.73 kB 210.73 kB
A
Bernstein(25) 1.8kB 1.8kB 1.8kB 1.8kB
Polynomial 4
Chebyshev(25) 1.8kB 1.8kB 1.8kB 1.8kB
Polynomial
99.4% Reduction 99.3% reduction from

from B-Trees Neural Network Model

Main Key Insight

* “Indexing” is better interpreted as less of a learning problem and
more of a fitting problem. Where overfitting Is advantageous.

* Learning: separate training and test data.
* Fitting: same training and test data.

Conclusion

* We advocate for the use of function interpolation as a ‘learned index’
due to the following benefits:
* No hyperparameter tuning.
* Fast creation time on a CPU-only environment.

* Provides a higher compression rate vs. Neural Networks and definitely vs. B-
Trees.

