Real-time Lane Configuration with Coordinated Reinforcement Learning

Presenter: Udesh Gunarathna

Authors: Udesh Gunarathna, Hairuo Xie, Egemen Tanin, Shanika Karunasekara, Renata Borovica-Gajic University of Melbourne

How Often Have You Stuck In Traffic Like This?

Figure: Directionally imbalanced traffic. Congested traffic in one direction and oppose direction having less traffic.¹

¹https://i.dailymail.co.uk

Real-time Lane-direction Configuration with Connected Autonomous Vehicles

• What is real-time lane-direction configuration?

Changing the travelling direction of lanes in road segments based on real-time traffic information in short time intervals.

• Why consider this problem now?

Capabilities of Connected Autonomous Vehicles!

Yes! Lane-direction change in one road segment may affect traffic flow in neighboring road segments.

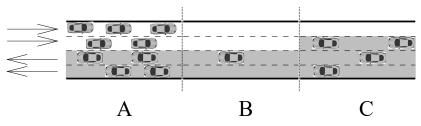


Figure: Three road segments A, B, C with different lane-configurations.

What makes lane configuration computation difficult in real-time? **Computation needs to be lightweight**

< □ > < □ > < □ > < □ > < □ > < □ >

Proposed Architecture: Coordinated Learning-based Lane Allocation

• We propose an efficient multi-agent, scalable solution.

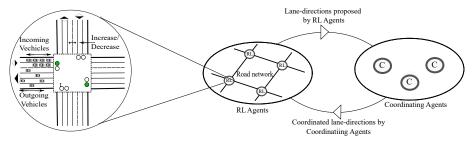


Figure: Architecture of CLLA consists of *RL Agents* that operate at the intersection level and *Coordinating Agents* who evaluate the global impact of local lane-direction changes.

.

Existing approaches use mathematical programming to compute lane-direction allocation based on pre-known traffic patterns.

- Why existing methods cannot compute real-time lane-direction allocations?
 - Inability to work with real-time data
 - Computation cost is very high
 - Microscopic simulation vs Macroscopic simulation gap

Why Multi-agent Reinforcement Learning?

• Why reinforcement learning?

- Real-time control
- Lack of lane-changing traffic models

- Why not a single reinforcement learning agent?
 - Exponential growth of state-space
 - Difficulty of learning

• Coordination is the key!

- Network level impact of changes needs to be considered
- Distributed RL Agents' action may conflict with each other

Coordinated Learning-based Lane Allocation

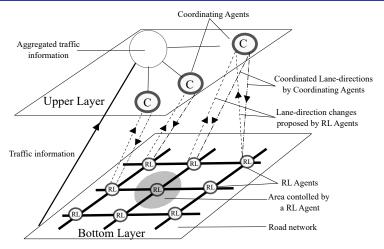


Figure: Architecture of CLLA consists of *RL Agents* that operate at the intersection level and *Coordinating Agents* that evaluate the global impact of local lane-direction changes.

< □ > < □ > < □ > < □ > < □ > < □ >

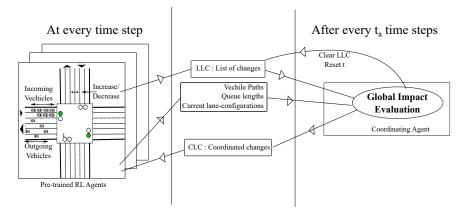


Figure: Overall CLLA algorithm with a single Coordinating Agent

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Complexity

- $\mathcal{O}(m \times n)$
 - m : number of proposed changes from RL Agents
 - n : Number of neighbors per road segment
- $\bullet~n$ does not increase with the network size
- $\mathcal{O}(m \times n) \rightarrow \mathcal{O}(m)$
- Worst case: $\mathcal{O}(|E|)$, |E|: total number of road segments

Distributed Version

A distributed version can reduce the complexity further with a communication layer.

Results from Manhattan Road Network

- Simulated using SMARTS [1], a microscopic simulator
- Using one hour of New York taxi data on Manhattan road network

Baseline	Travel Time(s)	% of Vehicles with DFFT>6
no-LA	604.32	45.9
LLA	585.83	48.6
DLA	496.12	50.7
CLLA	471.28	45.87

Table: Performance of baselines evaluated using New York taxi data. **noLA** is a baseline with no lane-direction allocations, **LLA** is similar to **CLLA**, without the upper-layer coordination and **DLA** is a baseline algorithm which allocates lane-directions based on aggregated traffic demand.

Thank you Q & A

Udesh Gunarathna

æ

イロト イヨト イヨト イヨト