CrashSim: An Efficient Algorithm for Computing SimRank over Static and Temporal Graphs

Mo Li^{1,2}, Farhana M. Choudhury², Renata Borovica-Gajic², Zhiqiong Wang¹, Junchang Xin^{1,*}, Jianxin Li³

¹Northeastern University, CN ²University of Melbourne, AU ³Deakin University, AU

April 22, 2020

Outline

Background

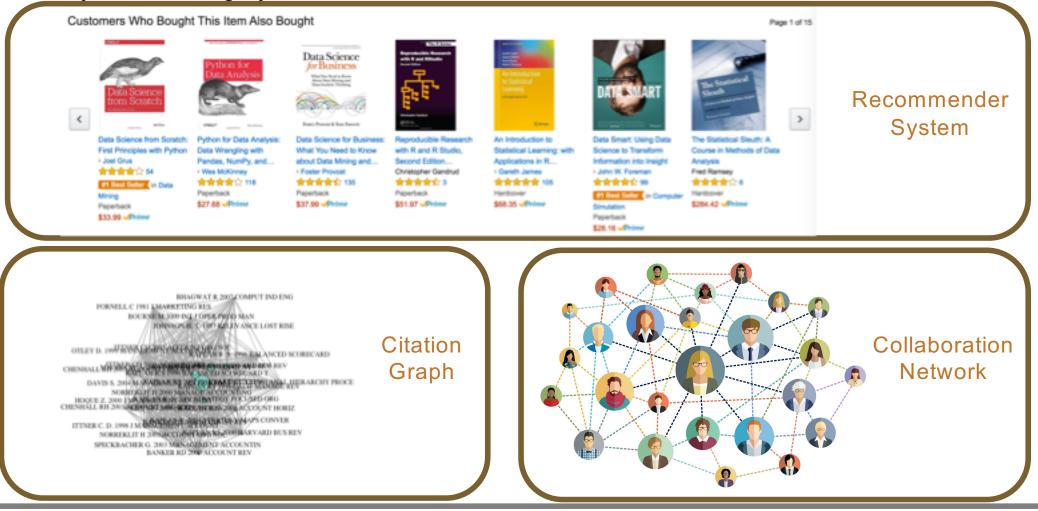
- SimRank Overview
- Motivation

Our Approach

- CrashSim Algorithm --- static graphs
- CrashSim-T Algorithm --- temporal graphs

Problem Definition

Preliminaries Problem Definition


Experiments and Conclusion

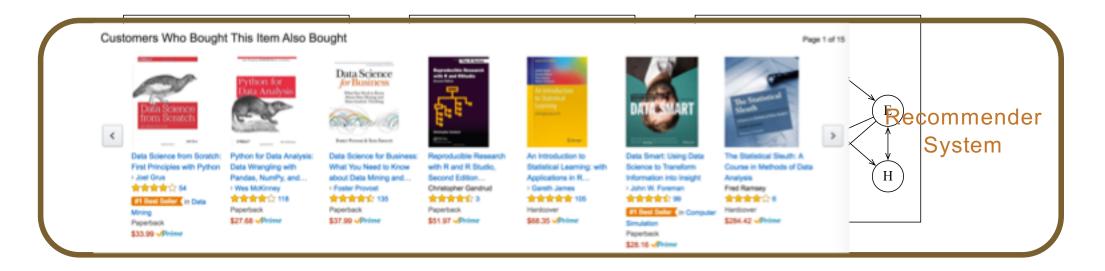
Experimental Evaluation
 Conclusion

Background

• Similarity assessment plays a vital role in our lives.

Background

- SimRank
 - Node-to-node measurement based on the topology of graphs (KDD'02)
 - Basic assumption
 - Two nodes will be similar if they are both highly relevant to similar nodes
- Two Forms
 - Original definition (KDD'02)


$$s(u,v) = \begin{cases} 1, & \text{if } u = v\\ \frac{c}{|I(u)| \cdot |I(v)|} \sum_{x \in I(u), y \in I(v)} s(x,y), & \text{otherwise.} \end{cases}$$

• $\sqrt{\text{c-walk}(\text{SIGMOD'16})}$

 $s(u, v) = \Pr\left[W(u) \text{ and } W(v) \text{ meet}\right]$

Background

• Temporal Graph

• Temporal SimRank queries: threshold and trend

Preliminaries

Definition 1 (\sqrt{c} -walk). Let c denotes the decay factor in the definition of SimRank, a \sqrt{c} -walk in G is defined such that:

- In each step of the random walk, we have $1 \sqrt{c}$ probability to stop.
- For the remaining √c probability, one of the in-neighbors of the current node is selected uniformly at random as the next step.

$$s(u, v) = \Pr[W(u) \text{ and } W(v) \text{ meet}] \qquad \text{SLING algorithm (SIGMOD'16)}$$
$$= \sum_{i} \Pr[W(u) \text{ and } W(v) \text{ first meet at } u_i].$$
ProbeSim algorithm (VLDB'17)

Problem Definition

Problem (Temporal SimRank Queries)

Given: *G*, *u*, $[T_1, T_t]$

Return: node set Ω , such that the SimRank of u and each node $v \in \Omega$ continuously meet a certain query requirement during the entire query interval $[T_1, T_t]$

Problem (Temporal SimRank Trend Query)

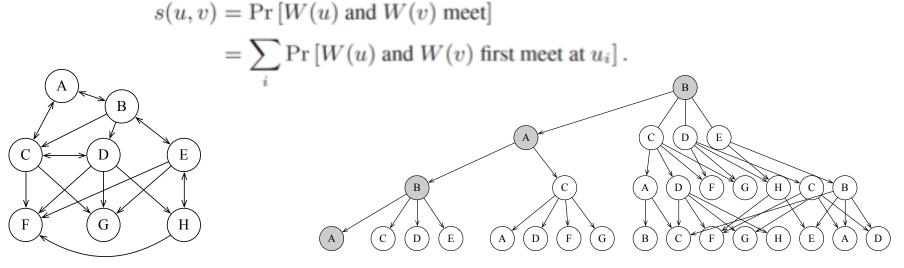
```
Given: G, u, [T_1, T_t]
```

Return: node set Ω , such that the SimRank of *u* and each node $v \in \Omega$ is continuously

increasing (or decreasing) during the entire query interval $[T_1, T_t]$

Problem (Temporal SimRank Threshold Query)

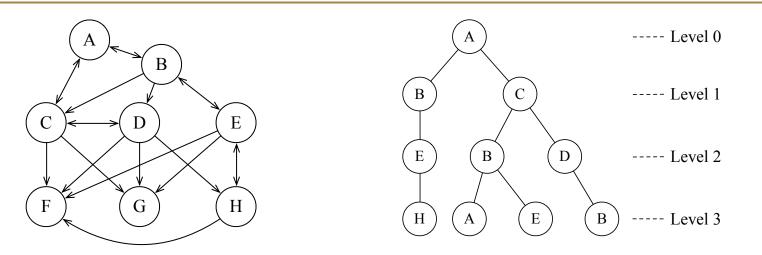
Given: G, u, $[T_1, T_t], \theta$


Return: node set Ω , such that the SimRank of *u* and each node $v \in \Omega$ is greater than

 $\boldsymbol{\theta}$ during the entire query interval $[T_1, T_t]$

CrashSim Algorithm

- Motivation
 - ProbeSim (VLDB'17) is the state-of-the-art algorithm for SimRak computation over static graph


- Drawbacks
 - redundant computations
 - the length of \sqrt{c} -walk determine the computation costs

CrashSim Algorithm

- Key idea
 - Constrain the length of \sqrt{c} -walk to l_{max}
 - A reverse reachable tree of source u with the limited length of \sqrt{c} -walk, l_{max}
 - Still obtain SimRank estimators with the same guaranteed error bound of the ProbeSim

Problem (Approximation Guarantee) **Given:** *G*, *u*, ε , δ **Return:** s(u, v) such that $|s(u, v) - sim(u, v)| \le \varepsilon$ with at least $1 - \delta$ probability

CrashSim Algorithm

$$U(0,A) = 1$$

$$U(1,B) = U(0,A) \times \frac{\sqrt{c}}{|I(B)|} = 1 \times \frac{0.5}{2} = 0.25$$

$$U(1,C) = U(0,A) \times \frac{\sqrt{c}}{|I(C)|} = 1 \times \frac{0.5}{3} = 0.167$$

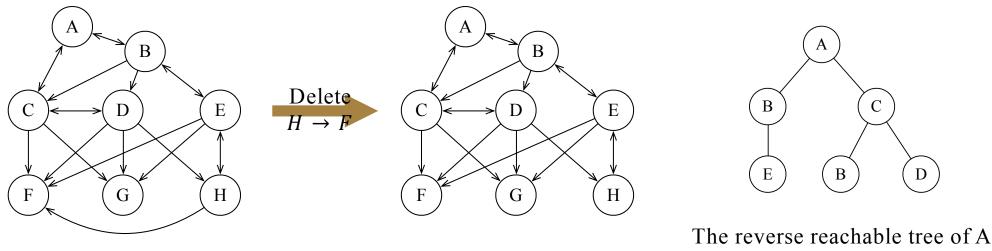
$$U(2,E) = 0.0625, U(2,B) = 0.0417, U(2,D) = 0.0417$$

$$U(3,H) = 0.0156, U(3,A) = 0.0104$$

$$U(3,E) = 0.0104, U(3,B) = 0.0104$$

In the k-th trial, W(C) = (C, D, B, A) $s_k(A, C) = U(0, C) + U(1, D) + U(2, B) + U(3, A)$ = 0 + 0 + 0.0417 + 0.0104 = 0.0521 **Theorem 1.** For any node $v \in \Omega$, sim(u,v) and its estimator s(u,v) satisfies $\Pr\{|sim(u,v) - s(u,v)| \le \varepsilon\} \ge$ $1 - \delta$, where $s(u,v) = \frac{1}{n_r} \sum_{k=1}^{n_r} \sum_{i=2}^{\min(l,l_{\max})} P(v,W(u,i))$, $l_{\max} = \frac{1+\sqrt{c}}{(1-\sqrt{c})^2}$, $n_r = \frac{3c}{(\varepsilon - p\varepsilon_t)^2} \log \frac{n}{\delta}$, $\varepsilon_t = (\sqrt{c})^{l_{\max}}$, $p = \sum_{k=1}^{l_{\max}} (\sqrt{c})^{k-1} (1 - \sqrt{c})$.

Time Complexity: $O(m + n_r \cdot |\Omega|) = O(m + \frac{3c}{(\varepsilon - p\varepsilon_t)^2} \log \frac{n}{\delta} \cdot |\Omega|).$

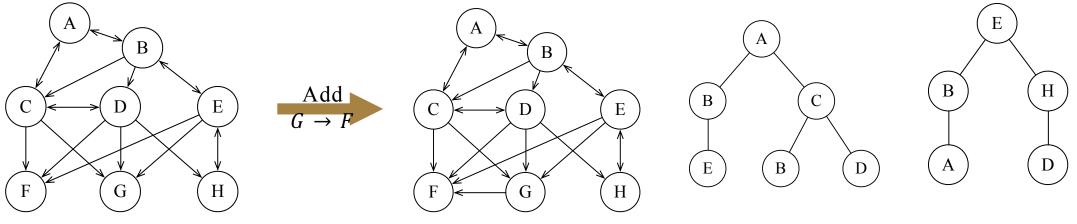

CrashSim-T Algorithm

- Two opportunities
 - Unnecessary to compute the SimRank between u and the candidate node set Ω at each time instant
 - The size of node set Ω can only gradually reduce over time

• CrashSim naturally supports the computation of SimRank of the source u and a partial set of nodes.

CrashSim-T Algorithm --- Delta Pruning

- Affected area of a changed edge $x \rightarrow y$
 - The altered nodes in the reverse reachable tree of u
 - $l_{max} 1$ length reachable nodes of y
- Delta pruning: ignore the nodes of an unaffected area


remains unchanged.

CrashSim-T Algorithm ---- Difference Pruning

• Related area: the l_{max} length reverse reachable tree of u and vs(u,v) = Pr[W(u) and W(v) meet]

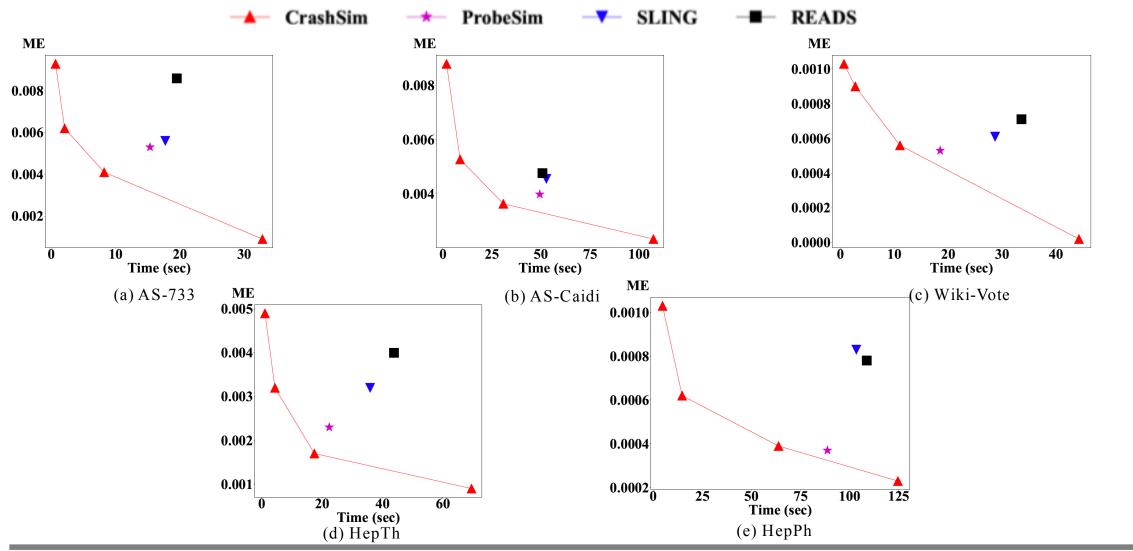
$$=\sum_{i} \Pr[W(u) \text{ and } W(v) \text{ first meet at } u_i]$$

• Difference pruning: filter out those nodes whose related area is unchanged

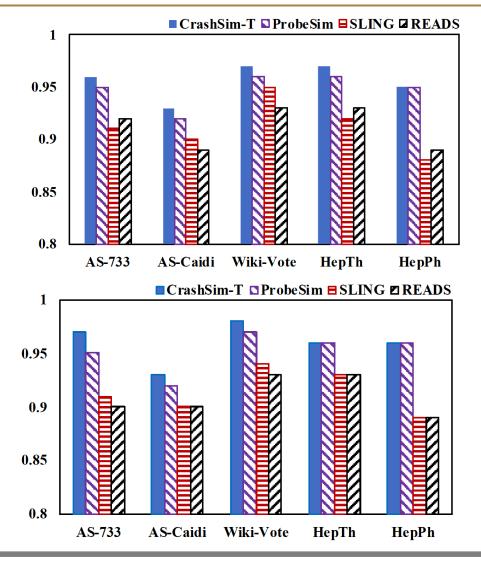
The reverse reachable tree of A and E remains unchanged.

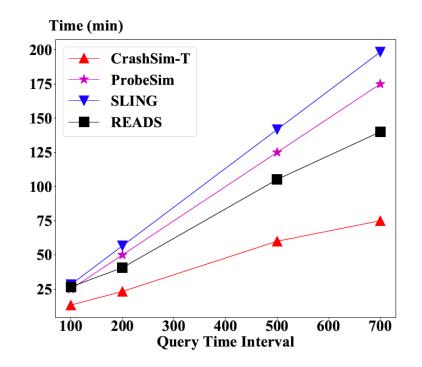
CrashSim-T Algorithm

- Main idea
 - Check whether the conditions of delta and difference pruning are satisfied
 - If so, disregard those nodes as part of the candidate node set
 - Invoke CrashSim algorithm to compute u and residual nodes
 - According to different query requirements to filter out unsatisfied nodes


Experimental Evaluation

• Datasets


Datasets	Туре	n	m	t
AS-733	Undirected	6,474	13,233	733
AS-Caidi	Directed	26,475	106,762	122
Wiki-Vote	Directed	7,155	103,689	100
HepTh	Undirected	9,877	25,998	100
HepPh	Directed	34,546	421,578	100


- Comparison baselines
 - SLING (SIGMOD'16), ProbeSim (VLDB'17), READS (VLDB'17)
- Setting and metrics
 - ε varies from 0.0125, 0.025, 0.05 to 0.1
 - $ME = \max|s(u, v) sim(u, v)| (v \in V)$
 - precision = $\frac{v(k_1) \cap v(k_2)}{\max(k_1,k_2)}$

Experimental Evaluation

Experimental Evaluation

The impact of the query interval on the response time of the algorithms

Conclusion

- Propose **CrashSim** algorithm, an index-free algorithm for single-source and partial SimRank computation in static graphs
- Introduce **CrashSim-T** --- an extension to CrashSim to solve SimRank queries over temporal graphs
- Experiments show that both CrashSim and CrashSim-T outperform the state-of-theart algorithms.

Thanks.

Mo Li limo_neucse@hotmail.com