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Ride-Hailing Apps Surpass Regular Taxis in NYC
Yearly Taxi Pickups in New York City compared to Ride-Hailing Apps”
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EXisting research focus

» Speed-up the matching time
» Large scale real-time ridesharing with service guarantee on road networks, PVLDB, 2014
= A unified approach to route planning for shared mobility, PVLDB, 2018

» GeoPrune: Effciently Matching Trips in Ride-sharing Through Geometric Properties,
SSDBM, 2020

» Improve the matching quality

= Price-aware real-time ride-sharing at scale: an auction-based approach, SIGSPATIAL,
2016

= Utility-aware ridesharing on road networks, SIGMOD, 2017
» Mobility-aware dynamic taxi ridesharing, ICDE, 2020



EXisting research focus

» Speed-up the matching time
» Large scale real-time ridesharing with service guarantee on road networks, PVLDB, 2014
= A unified approach to route planning for shared mobility, PVLDB, 2018

Existing research focus: single-hop ride-sharing

The possibility of transfers is not considered in previous works

= Utility-aware ridesharing on road networks, SIGMOD, 2017
» Mobility-aware dynamic taxi ridesharing, ICDE, 2020



Multi-hop ride-sharing: example
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Multi-hop ride-sharing: example
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Assumption: insertion

Bob

iIssue time 9:00 am
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Multi-hop match:

> r,.m=<c¢q,Ccy, ¢, T >
» c,. the first vehicle
" ¢, the second venhicle
» ¢: the transfer point

» [": the insert positions
* I'(s): source to the first vehicle’s schedule
» I'(¢,) transfer point to the first vehicle’s schedule
« I'(¢,): transfer point to the second vehicle’s schedule
« ['(e): destination to the second vehicle’s schedule



High computationl complexity

> r,.m=<c¢q,Ccy, ¢, T >

S\ S

# vehicles (|C|) # transfer points (|[P]) (Possible insertion
positions)* (|S])*

» Possible solutions: |C| * |C| * [P] * |S|?



Two algorithms are proposed

» Station-first algorithm
» Vehicle-first algorithm



Station-first algorithm

> r,.m=<c¢q,Ccy, ¢, T >
» Filter out possible transfer point ¢

» For each possible ¢
« Searchforcy, c,,and T
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Station-first algorithm : prune ¢
Vv

3 Issue time 9:00 am
| . ST, latest pick-up  9:05 am
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Pruning strategy: the transfer point must be within a detour ellipse




Station-first algorithm: determine ¢4, ¢,, and I

» A transfer point ¢ splits the trip into two itineraries
" |tinerary 1. s — ¢
» |tinerary 2: ¢ — d

» State-of-the-art single-hop algorithm — GeoPrune?
= GeoPrune (s, ¢)
= GeoPrune (¢, d)

Preferable when possible transfer points are sparse

1. Yixin Xu, Jianzhong Qi, Renata Borovica-Gajic, Lars Kulik. GeoPrune: Effciently Matching Trips in Ride-sharing Through
Geometric Properties, International Conference on Scientic and Statistical Database Management (SSDBM), 2020.



Vehicle-first algorithm

> r,.m=<c¢q,Ccy, ¢, T >
= first determine ¢, c,, and T’

» For each < cy,cy,0,T >
« Search for the optimal transfer point ¢

Preferable when possible transfer points are sparse- dense



Venhicle-first algorithm: determine ¢4, ¢,, and I’

» Possible transfer
» The detour ellipses of two vehicles must overlap

Ellipse (c,) Ellipse (c,) Ellipse (c,) Ellipse (c,)

Possible transfer points No transfer



Venhicle-first algorithm: determine ¢

» Key observation: the optimal transfer point depends on only

several fixed locations — , y
A= go + g1 + go — dy Minimize g; + g9, + g; + 9>




Speed-up

» Learn the reachable area (ellipse)
» Only check the first few transfer points

top

left y ' right
P, P2

bottom



Experimental results

» Real-word datasets
* Chengdu (CD): 166,296 nodes, 405,460 edges

» Default settings
= # requests: 10000
= # vehicles: 4096
» Waiting time: 4min
= Detour raio: 0.2
= Minimize the total travel distance



Benefits of multi-hop ride-sharing

» Effect of the detour ratio

N w

# unmatched requests
|_\

k
y
k,
k,
MultiHop —»—
0 No-multiHop

0.2 0.4 0.0 0.8 1
Detour ratio

(km)

average distance

MultiHop —%—

No-multiHop

0.2

0.4 0.6 0.8
Detour ratio

1



Benefits of multi-hop ride-sharing

» Effect of the detour ratio
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Algorithm performance

» Effect of the # transfer points
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Algorithm performance

» Effect of the # transfer points

0

Station-first algorithm achieves faster matching time
when the number of transfer points is limited
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Algorithm performance

» Effect of the detour raio
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Algorithm performance

» Effect of the detour raio

The approximation strafegies Improve the matching time by one
order of magnitude while achiving comparable matchmg quality

IR

0.2 0.4 0.060.8 1 0.2 0.4 0.060.8 1 0.2 0.4 0.060.8 1
detour ratio Detour ratio detour ratio

# unmatched
average dist.



Conclusion

» Benefits of Multi-hops
» Substantially enhance flexibility of ride-sharing
= More requests served
» |ess travel time required

» Our proposed exact algorithm outperforms the state-of-the-art
by 2~3 orders of magnitude

» Our speed-up techniques accelerate the matching time by
another order of magnitude

» Our efficient and scalable algorithms enable multi-hop ride-
sharing in real-world



Insertion -- vehicle schedule

50D 3 mins 15 mins
issue time 9:00 am - -@ -1l
latest pick-up  9:05 am p” () p' (pick-up Bob) p* (drop-off Bob)
latest drop-off 9:23 am
I R DO R
Est arrival (Arr)  9:00 am 9:03 am 9:18 am

Lat arrival (Lat) 9:00 am 9:05 am 9:23 am



Prediction quality

True

Our prediction strategies correctly predict 98% reachable areas
Predict Jl —

True
—

94.62% 93.25% 97.68%



Speed-up: learning the reachable area

A\

Input: the two locations, the time budget

Strategy 1.
= predict the four boundaries (top, left, bottom, right)
» L0SS: mean square error
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Speed-up: learning the reachable area

YV VY

Strategy 2:

» predict the four gap values (Atop, Aietty Dpotioms Aright)
» Loss function: mean square error
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Observation: ellipses bound the reachable area

bound_right



Venhicle-first algorithm: determine ¢

» Key observation: the optimal transfer point depends on only 3-
4 stops in the schedule.




Speed-up: learning the reachable area

» Observation: penalize large prediction to avoid false negatives

» Strategy 2.

= predict the four gap values (A, At Apottoms Aright)

= Customize loss function

bound_top
pradl Atop AN
lAIeft Arid
| P1 Pa| .
bound_left | < A I
R ‘boftom”~

bound_bottom

1 T
L==D @ytrue—ypred)’
=1

bound_right



