

A Fully On-disk Updatable Learned Index

Hai Lan¹, Zhifeng Bao¹, J. Shane Culpepper², Renata Borovica-Gajic³, Yu Dong⁴

¹ RMIT University, ² The University of Queensland ³ The University of Melbourne, ⁴ PingCAP

FACT 1

Learned indexes in **main memory** show promising performance in **throughput** and **index size**. FACT 2

Widely used database systems are still **on disk** due to the large dataset size, index size and so on.

The Case for Learned Index Structures SIGMOD 2020

FACT 1

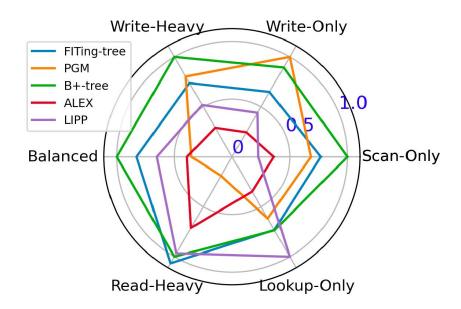
Learned indexes in **main memory** show promising performance in **throughput** and **index size**. FACT 2

Widely used database systems are still **on disk** due to the large dataset size, index size and so on.

Can we apply learned indexes on the disk setting?

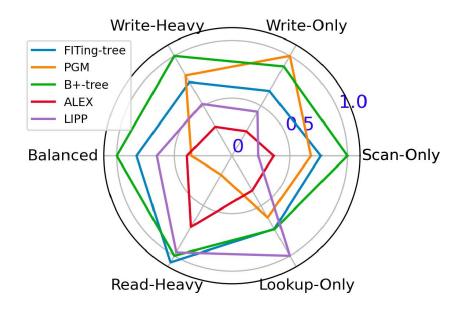
The Case for Learned Index Structures SIGMOD 2020

Normalized throughputs on the FB dataset



Updatable Learned Indexes Meet Disk-Resident DBMS - From Evaluations to Design Choices SIGMOD 2023

Normalized throughputs on the FB dataset



Overall, **B+-tree** is the (second-)best.

LIPP outperforms other indexes on Lookup-Only workload.

PGM outperforms other indexes on **Write-Only** workload.

Updatable Learned Indexes Meet Disk-Resident DBMS - From Evaluations to Design Choices SIGMOD 2023

#blocks/nodes fetched in Read-Only workload

_						- Lookup
				# Total Block <mark>s</mark> (L)		← Scan
	FITing-tree	5	3	4.2	5	
	PGM	6	3.9	5.2	5.6	
-	ALEX	7.7	6.5	8.1	10.6	
	LIPP	1.8 (18.8)	-	3	24	
	B+-tree	4	3	4	4.5	

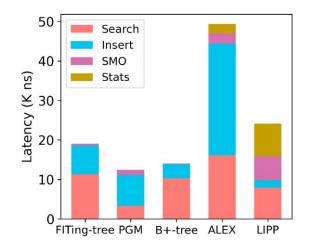
Challenge 1. A learned index cannot guarantee to reduce **I/O costs** when searching data on disk.

#blocks/nodes fetched in Read-Only workload

					— Lookup
			# Total Blocks (L)		Scan
FITing-tree	5	3	4.2	5	l
PGM	6	3.9	5.2	5.6	
ALEX	7.7	6.5	8.1	10.6	
LIPP	1.8 (18.8)	-	3	24	
B+-tree	4	3	4	4.5	

Challenge 1. A learned index cannot guarantee to reduce **I/O costs** when searching data on disk.

Latency breakdown in Write-Only workload



Challenge 2. Most learned indexes suffer from large **insertion overheads**.

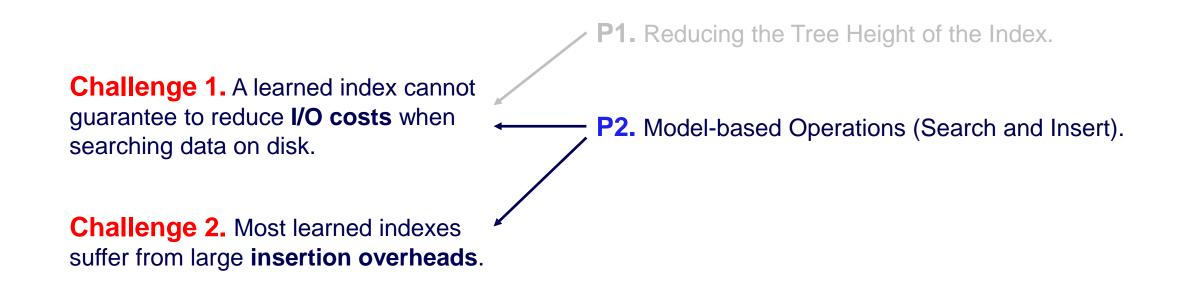
Challenge 1. A learned index cannot guarantee to reduce **I/O costs** when searching data on disk.

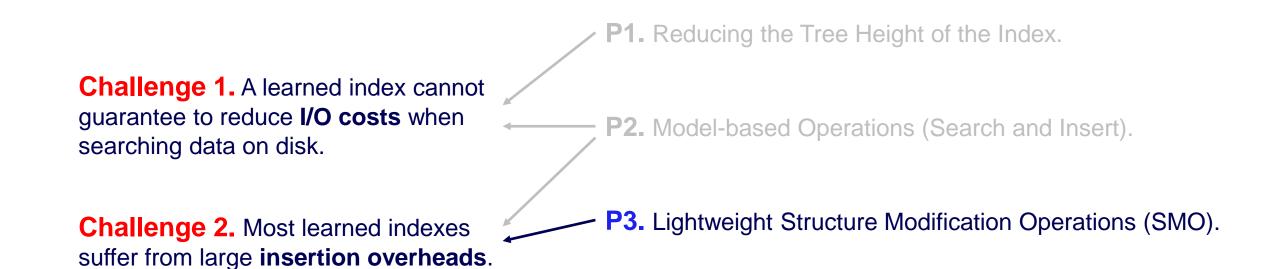
Challenge 2. Most learned indexes suffer from large **insertion overheads**.

P1. Reducing the Tree Height of the Index.

Challenge 1. A learned index cannot guarantee to reduce **I/O costs** when searching data on disk.

Challenge 2. Most learned indexes suffer from large **insertion overheads**.





Challenge 1. A learned index cannot guarantee to reduce I/O costs when searching data on disk.
 P1. Reducing the Tree Height of the Index.
 P2. Model-based Operations (Search and Insert).
 P3. Lightweight Structure Modification Operations (SMO).

P4. Better Scan Performance.

Challenge 1. A learned index cannot guarantee to reduce **I/O costs** when searching data on disk.

Challenge 2. Most learned indexes suffer from large **insertion overheads**.

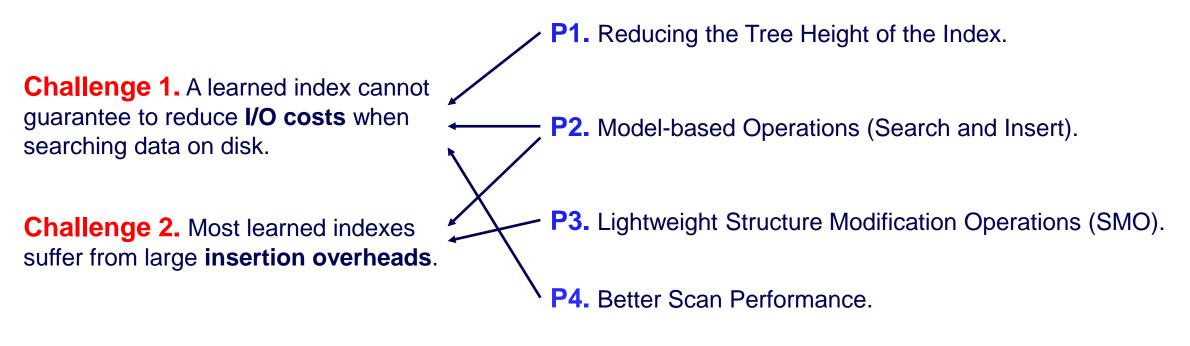
P1. Reducing the Tree Height of the Index.

P2. Model-based Operations (Search and Insert).

- P3. Lightweight Structure Modification Operations (SMO).

P4. Better Scan Performance.

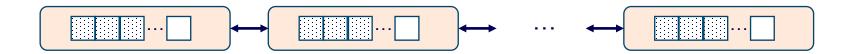
P5. Support Duplicate Index Keys.



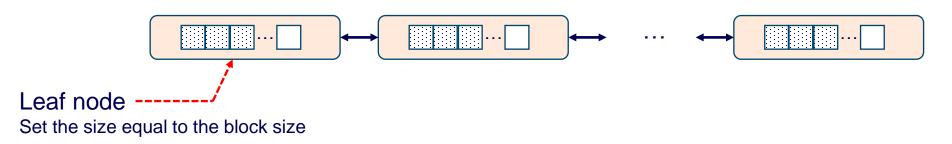
P5. Support Duplicate Index Keys.

AULID, <u>an updatable</u> <u>learned</u> <u>index on</u> <u>d</u>isk <u>Simple Yet Effective</u>

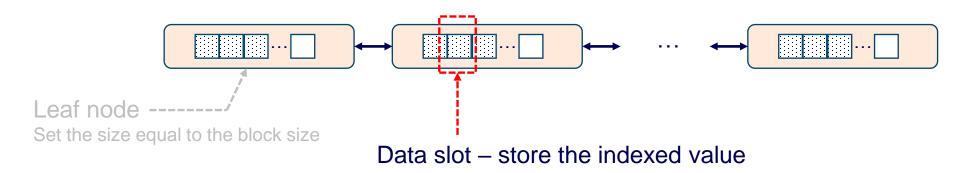
Leaf Node Layer

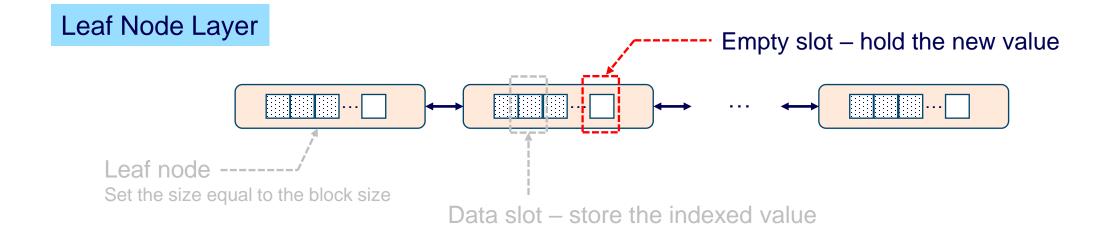


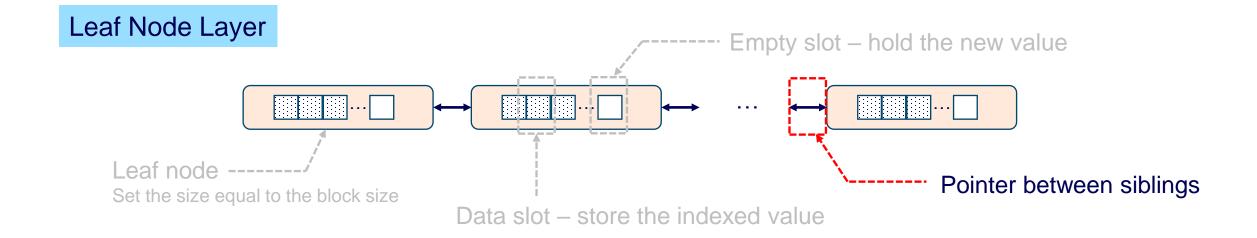
Leaf Node Layer

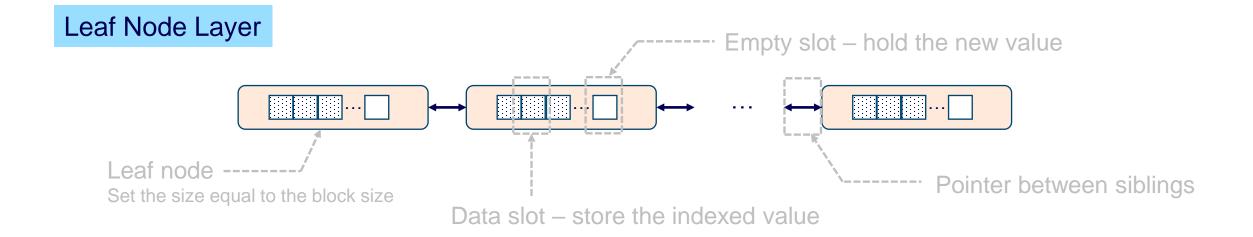


Leaf Node Layer



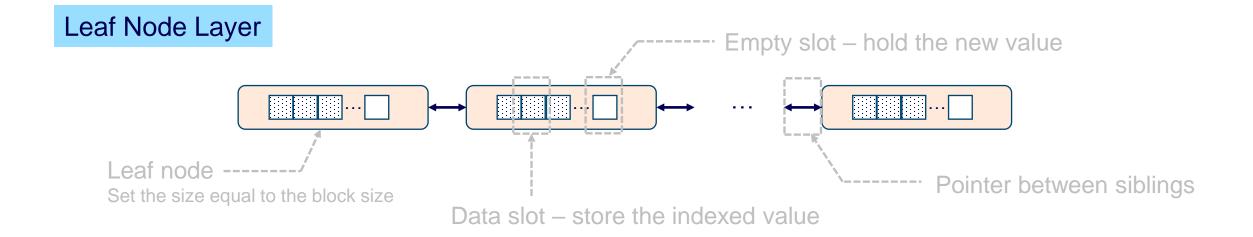






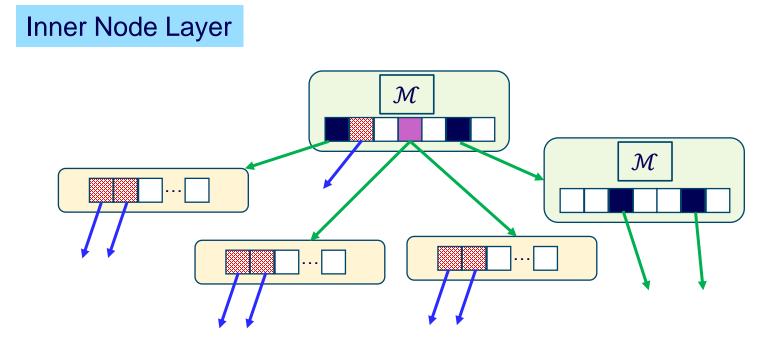
Benefits

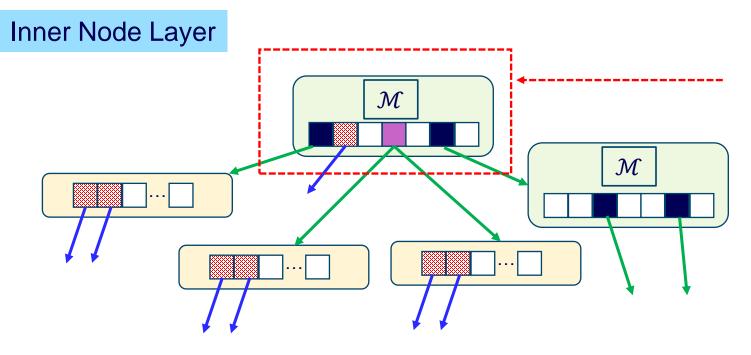
- Low overhead for scan operations in fetching the *next* item (P4).



Benefits

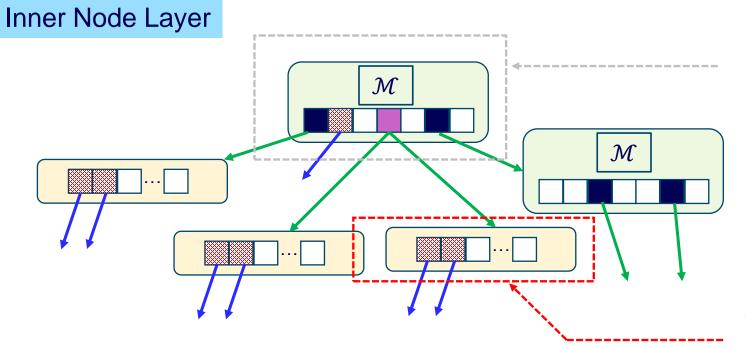
- Low overhead for scan operations in fetching the *next* item (P4).
- Low insertion overhead and SMO overhead (P3).





Mixed inner node

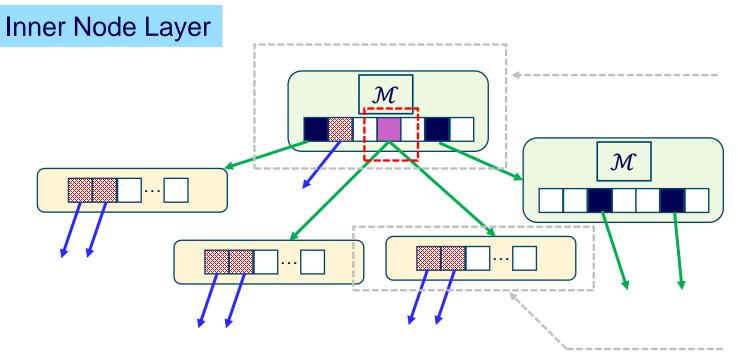
- Can hold different **slot** types
- Use a **model** to determine which slot to be accessed next



Mixed inner node

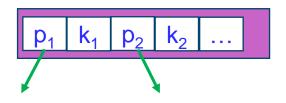
- Can hold different **slot** types
- Use a **model** to determine which slot to be accessed next

Packed inner node

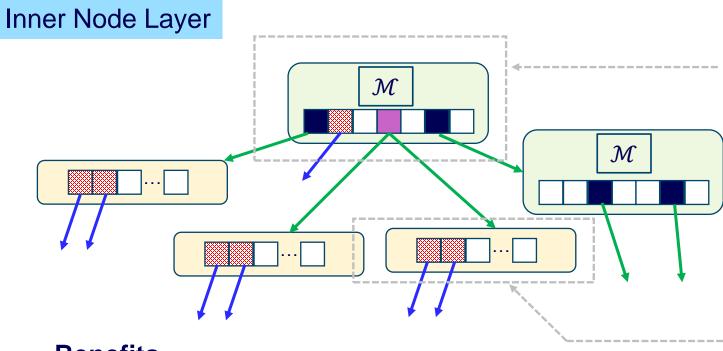


Mixed inner node

- Can hold different **slot** types
- Use a **model** to determine which slot to be accessed next



Packed inner node



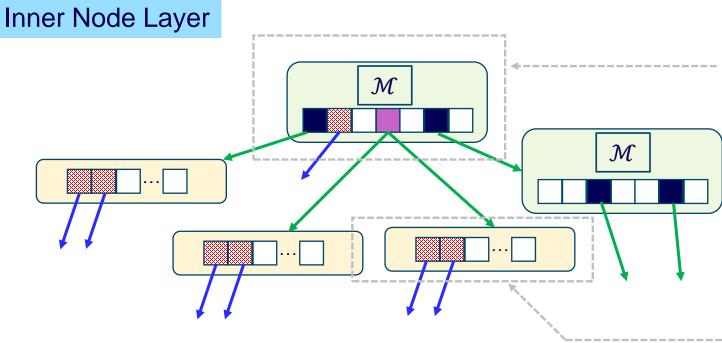
Benefits

- Reducing the **tree height** of the index (P1).

Mixed inner node

- Can hold different **slot** types
- Use a **model** to determine which slot to be accessed next

Packed inner node



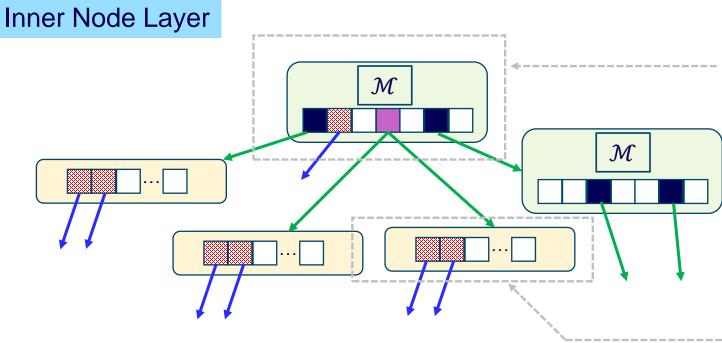
Benefits

- Reducing the **tree height** of the index (P1).
- Model-based operations (search and insert) (P2).

Mixed inner node

- Can hold different **slot** types
- Use a model to determine which slot to be accessed next

Packed inner node



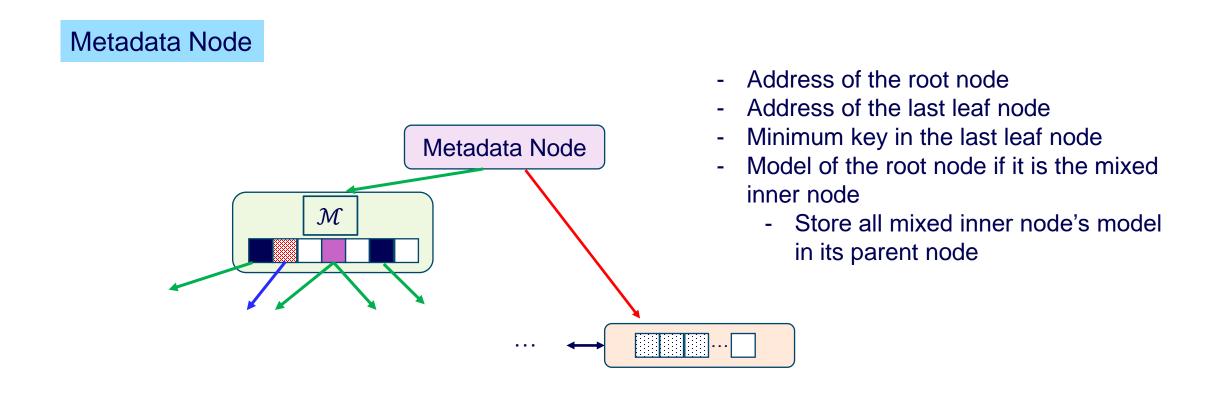
Benefits

- Reducing the **tree height** of the index (P1).
- Model-based operations (search and insert) (P2).
- Low **SMO** overhead in inner nodes (**P3**).

Mixed inner node

- Can hold different **slot** types
- Use a **model** to determine which slot to be accessed next

Packed inner node



Bulkload

Step 1: Construct the leaf nodes and collect the maximum key and address of each leaf node.

Bulkload

Step 1: Construct the leaf nodes and collect the maximum key and address of each leaf node.

Step 2: Call **FMCD**-based algorithm to construct the inner nodes.

Fastest Minimum Conflict Degree (FMCD)

Updatable Learned Index with Precise Positions VLDB 2021

Bulkload

Step 1: Construct the leaf nodes and collect the maximum key and address of each leaf node.

Step 2: Call **FMCD**-based algorithm to construct the inner nodes.

Packed inner nodes to hold the keys when #keys mapped to the same slot is not greater than **64**.

A special routing slot to hold the keys when #keys mapped to the same slot is greater than 64 while not larger than 1024.

When #keys mapped to the same slot is greater than **1024**, we build another **mixed node**.

Bulkload

Step 1: Construct the leaf nodes and collect the maximum key and address of each leaf node.	Packed inner nodes to hold the keys when #keys mapped to the same slot is not greater than 64 .					
Why we choose FMCD and extend it?						
Step 2: Call FMCD -based algorithm to construct the inner nodes.	Ct not larger than 1024 .	while				
	When #keys mapped to the same slot is greater than 1024 , we build another mixed node .					

Bulkload

 Step 1: Construct the leaf nodes and collect the maximum key and address of each leaf node.
 Packed inner nodes to hold the keys when #keys mapped to the same slot is not greater than 64.

 Step 2: Call FM the inner nodes.
 Why we choose FMCD and extend it?
 ✓ Compared to other model construction strategies, it can achieve the lowest average tree height most of time.
 When #keys mapped to the same slot is greater than 1024, we build another mixed node.

Bulkload

	nct the leaf nodes and collect the address of each leaf node.	Packed inner nodes to hold the key mapped to the same slot is not grea	
Step 2: Call FN the inner nodes.	 Achieve the lowest average ✓ Each conflict in FMCD will 	I extend it? I construction strategies, it can ge tree height most of time. Il build a new node, which may in some parts of the dataset.	vhen #keys 54 while greater

Bulkload

Step 1: Construct the leaf nodes and collect the maximum key and address of each leaf node.	Packed inner nodes to hold the keys when #keys mapped to the same slot is not greater than 64 .
 Step 2: Call FM the inner nodes. Why we choose FMCD and a Compared to other model a achieve the lowest average Each conflict in FMCD will lead to a high tree height in Packed inner nodes reduce overhead in SMO. 	construction strategies, it can a tree height most of time. build a new node, which may n some parts of the dataset.

Bulkload

Step 1: Construct the leaf nodes and collect the maximum key and address of each leaf node.

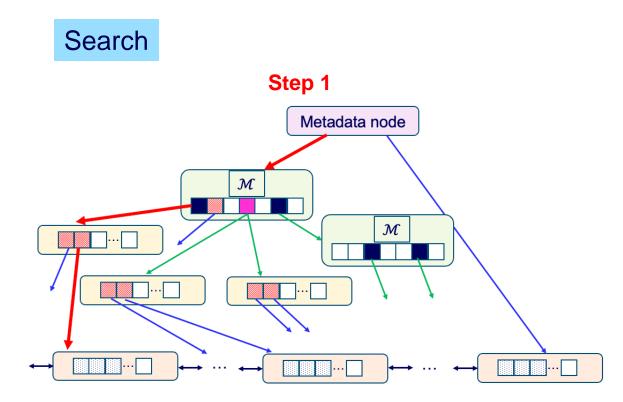
Step 2: Call **FMCD**-based algorithm to construct the inner nodes.

Step 3: Build the metadata node.

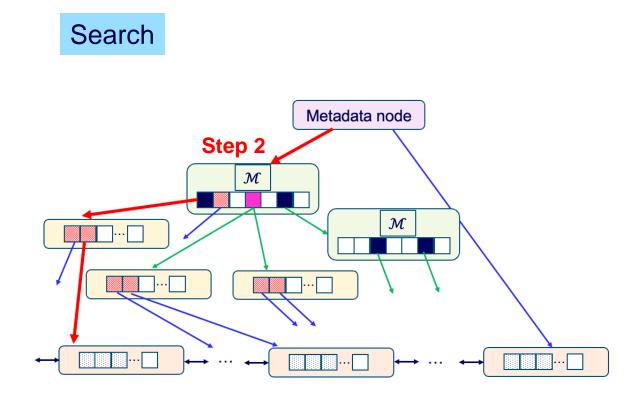
Packed inner nodes to hold the keys when #keys mapped to the same slot is not greater than **64**.

A special routing slot to hold the keys when #keys mapped to the same slot is greater than **64** while not larger than **1024**.

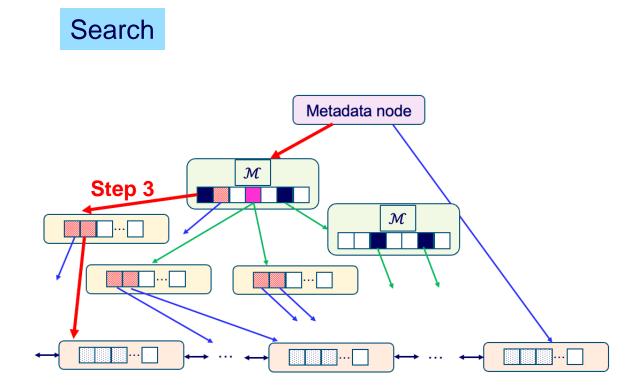
When #keys mapped to the same slot is greater **1024**, we build another **mixed node**.



Step 1: Visit metadata node and check key_{lk}? key_{min}

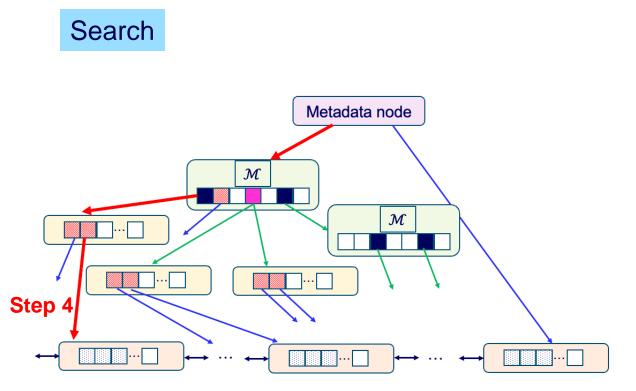


Step 1: Visit metadata node and check key_{lk} ? key_{min} **Step 2:** Compute which slot to access next in the root node, load related block and read the slot.



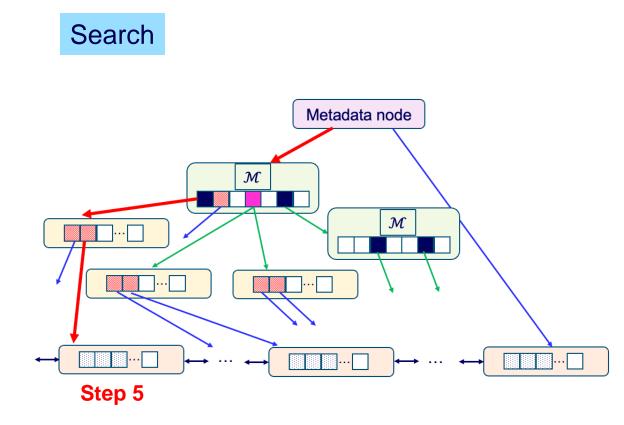
Step 1: Visit metadata node and check key_{lk}? key_{min}
Step 2: Compute which slot to access next in the root node, load related block and read the slot.
Step 3: If the slot type is , read the pointer and

load the corresponding block



Step 1: Visit metadata node and check key_{lk}? key_{min}
Step 2: Compute which slot to access next in the root node, load related block and read the slot.
Step 3: If the slot type is , read the pointer and load the corresponding block.

Step 4: If the node is packed inner node, do a binary search to find the slot to access next and load the corresponding leaf node.



Step 1: Visit metadata node and check key_{lk}? key_{min}
Step 2: Compute which slot to access next in the root node, load related block and read the slot.
Step 3: If the slot type is , read the pointer and load the corresponding block.
Step 4: If the node is packed inner node, do a binary search to find the slot to access next and load the corresponding leaf node.

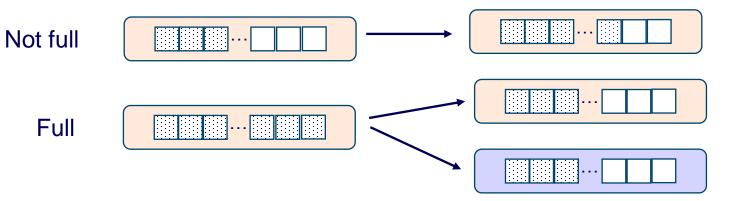
Step 5: Do a binary search on the leaf node.

Insert

Step 1: Insert into leaf node

Insert

Step 1: Insert into leaf node

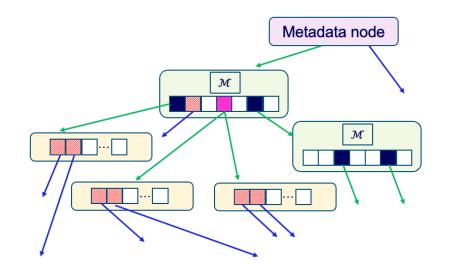


Store the large half values in the **original** block.

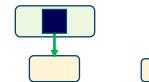
Collect address and key_{max} of the new leaf node.

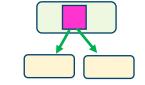
Insert

Step 2: Insert (key_{max}, addr) into the inner nodes.



1. Empty slot

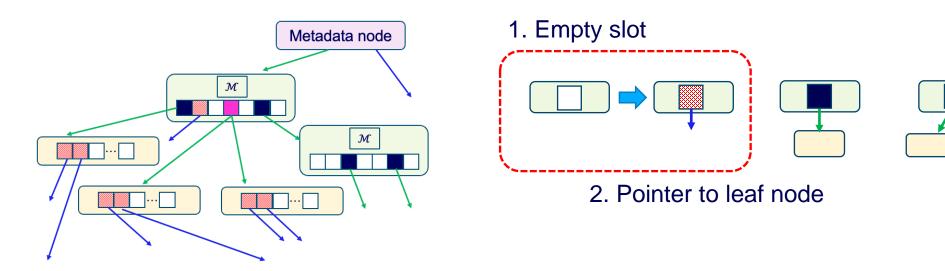




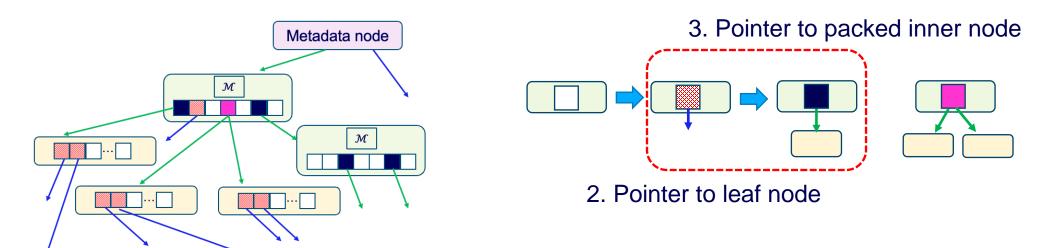
2. Pointer to leaf node

4. Special routing slot

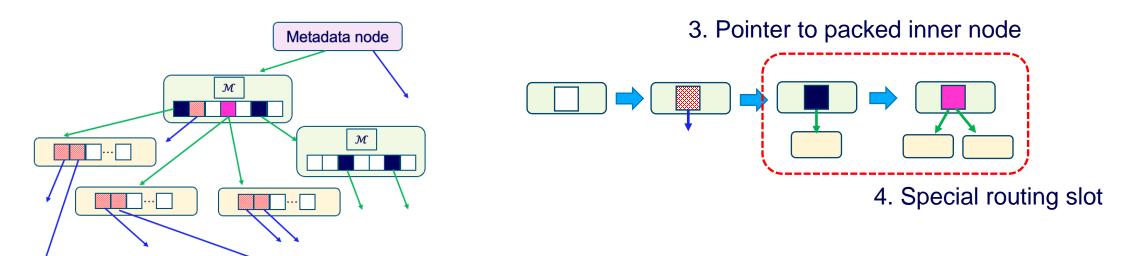
Insert



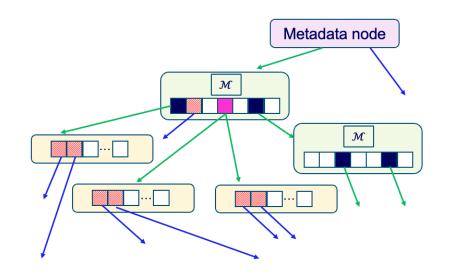
Insert

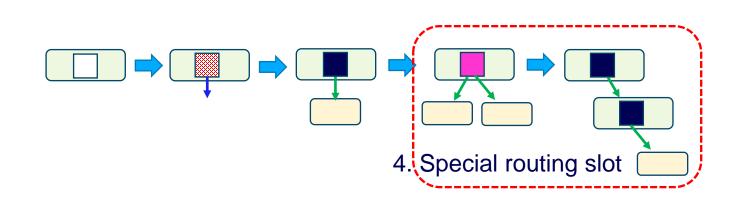


Insert



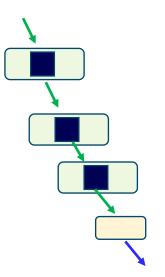
Insert





Tree Adjustment

Why – with more data inserted, some parts of the index may have a large height.



Tree Adjustment

Why – with more data inserted, some parts of the index may have a large height.

When – two criteria met at the same time:

- Percentage of the items in a subtree rooted at node n in the third layer or a deeper layer is larger than α .
- Number of current items rooted at node n is larger than β times of the initial size.



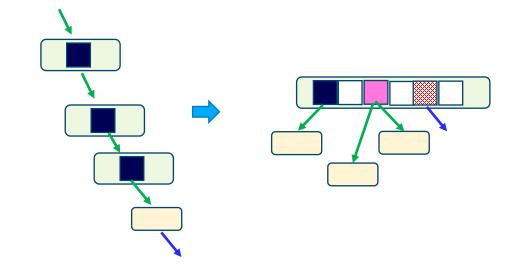
Tree Adjustment

Why – with more data inserted, some parts of the index may have a large height.

When – two criteria met at the same time:

- Percentage of the items in a subtree rooted at node n in the third layer or a deeper layer is larger than α .
- Number of current items rooted at node n is larger than β times of the initial size.

How – reload the inner node items rooted at node n and call our revised FMCD algorithm.



Experiment – Goal

Q1: How good is AULID as compared to other learned indexes and a B+-tree when disk-resident?

Q2: How well does AULID scale to large datasets?

Q3: Do the proposed index structure design and structural modification operation help improve the performance?

Q4: What are the impacts of different parameter settings on AULID performance?

Experiment – Goal

Q1: How good is AULID as compared to other learned indexes and a B+-tree when disk-resident?

Q2: How well does AULID scale to large datasets?

Q3: Do the proposed index structure design and structural modification operation help improve the performance?

Q4: What are the impacts of different parameter settings on AULID performance?

Experiment – Setup

Datasets

Hardness		Global Hardness		
		Easy	Normal	Hard
Local Hardness	Easy	C1		
	Normal		C2	C4
	Hard		C3	

C1: COVID (200M / 800M)
C2: PLANET (200M / 800M)
C3: GENOME (200M / 800M)
C4: OSM (200M / 800M)

Baselines ALEX, PGM, FITing-tree, LIPP, B+-tree

Are Updatable Learned Indexes Ready? VLDB 2022

	7000	-
	201201	

Updatable Learned Indexes Meet Disk-Resident DBMS - From Evaluations to Design Choices SIGMOD 2023

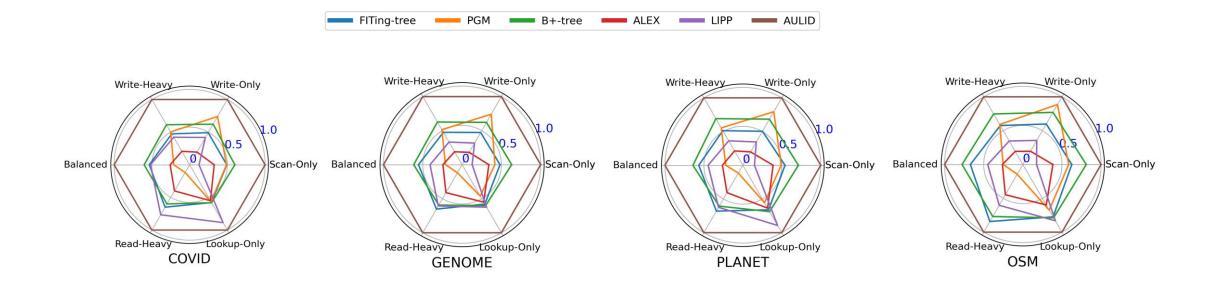
Experiment – Setup

Workload

Lookup-Only	Scan-Only	Write-Only	Write-Heavy	Balanced	Read-Heavy
100% lookups	100% scans	100% inserts		50% inserts 50% lookups	10% inserts 90% lookups

Metric

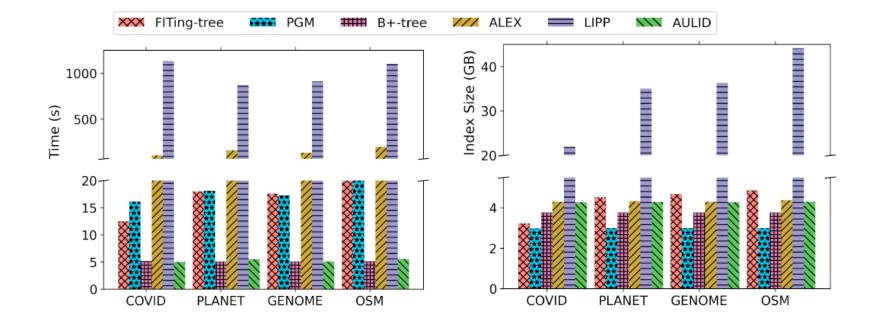
Experiment – Throughput Comparison



✓ AULID significantly beats other indexes in all datasets and workloads.

 \checkmark B+-tree is the **second best** in **most** workloads and datasets.

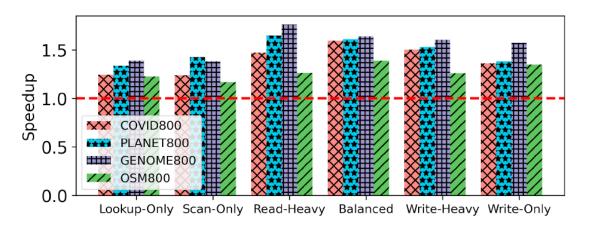
Experiment – Bulkload & Storage



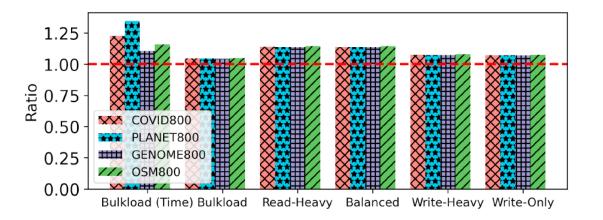
✓ AULID has **similar** bulkload time to B+-tree and is **faster** than other indexes.

✓ AULID has a **stable** index size among different dataset and is **competitive** to B+-tree.

Experiment – Large Scale Data



Throughput Speedup



Storage/time ratio

✓ The superiority of AULID also holds on large scale datasets.

Conclusion

□We reveal the **challenges** when applying the learned indexes on disk and propose our design **principles**.

□We propose AULID to meet the principles with the carefully designed index layout and operations.

□Our experiments show AULID **significantly beats** our baselines in all workloads and testing datasets.

Thanks!