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Proliferation of cold data

“80% enterprise data is cold with 60% CAGR” [Horison]
“cold data: an incredibly valuable piece of the analysis pipeline” [Intel]

Cold Storage Devices (CSD) to the rescue
— Active disks
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CSD in the storage tiering hierarchy
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CSD in the storage tiering hierarchy
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Can we shrink tiers to further save cost?
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CSD in the storage tiering hierarchy
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CSD in the storage tiering hierarchy

Tiers Storing 100TB of data
T 200 - [Horison, 2015]
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CSD offers significant cost savings (40%)
But... can we run queries over CSD? 6
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Query execution over CSD

Traditional setting Virtualized enterprise data center
Clients VM1 VM2 VM3
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Pull-based execution will trigger unwarranted group switches
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What this means for an enterprise datacenter...

Setting: multitenant enterprise datacenter, clients: PostgreSQL , TPCH 50, Q12, CSD: shared,
layout: one client per group
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Lost opportunity: CSD relegated to archival storage g
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Need hardware-software codesign

1. Data access has to be hardware-driven to
minimize group switches

2. Query execution engine has to process data
pushed from storage in out-of-order
(unpredictable) manner

3. Reduce data round-trips to cold storage by
smart data caching
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Skipper to the rescue

Virtualized enterprise data center
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Multi-way joins in PostgreSQL

Setting: Query AxBxC, A:A1, A2; B:B1,B2; C:Cl,C2;
VM: PostgreSQL
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Enable out-of-order opportunistic execution

DATA-INTENSIVE APPLICATIONS AND SYSTEMS
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Progress driven caching

Setting: Query AxBxC, Cache size: 4, Cache full, Evict a candidate

Cache :

A1,B1,C2
Al1,B2,C1
A1,B2,C2
A2,B1,C2
A2,B2,C1
A2,B2,C2

C2

Object Al | A2 |B1 |C1 Al | A2 | Bl |C2

Executed | progress | 1] 1| 2 | o

Al1,B1,C1
A2,B1,C1

Progress: 2

Minimizes data roundtrips, maximizes query progress
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Rank-based scheduling

Which group to switch to ?

Group Table objects

G1 01 (DB1), 03 (DB3)
G2 02 (DB2), 04 (DB4)
G3 05 (DB5)

01, 02, 03, 04, 05

TIME

New Ranking Algorithm
Rank(G) = #Requests + 3 Vait

/N

Provides efficiency Provides fairness
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Skipper in action

Setting: multitenant enterprise datacenter, clients: TPCH 50, Q12, CSD: shared,
layout: one client per group
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Skipper performs within 20% of HDD-based capacity tier
Skipper is resilient to group switch latency 14
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Minimizing group switches

Setting: multitenant enterprise datacenter, 5 clients: TPCH 50, Q12, CSD: shared,
layout: one client per group
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Skipper substantially reduces overhead of group switches ..
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Conclusions

e Cold storage can substantially reduce TCO

— But DBMS performance suffers due to pull-based execution

e Skipper enables efficient query execution over CSD with

— Out-of-order execution based on multi-way joins
— Novel progress based caching policy
— Rank based 1/0 scheduling

e Skipper makes data analytics over CSD as a service possible

— Providers reduce cost by offloading data to CSD
— Customers reduce cost by running inexpensive data analytics over CSD

. Thank you!
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