Cheap data analytics using cold
storage devices

Renata Borovica-Gajic, Raja Appuswamy, and
Anastasia Ailamaki

AINS (Wl

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

CIr |

Proliferation of cold data

“80% enterprise data is cold with 60% CAGR” [Horison]
“cold data: an incredibly valuable piece of the analysis pipeline” [Intel]

Cold Storage Devices (CSD) to the rescue
— Active disks

T .]

_ A e ey)eratency ~10
° D DD . N secs
/4] =

E/

A Power one disk

<

N
D
<hjlitency ~ 10 ms

Cool one disk

PB of storage at cost ~ tape and latency ~ disks

T ' o
CSD in the storage tiering hierarchy

e Ters .
.
: SSD 299 :
I Performance 1
I I
R i o T I
! $S
: Capacity

ns WS ms sec min hour
Data Access Latency

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

l
CSD in the storage tiering hierarchy

$S

Capacity :

35

>

[
|
[
|
|____
|
|
|
|

«?

ns s ms sec min hour
Data Access Latency

Can we shrink tiers to further save cost?

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

l
CSD in the storage tiering hierarchy

M . E—. B B SN B B EEE EEE SN B BEE BEE SN BN BN BN M B S

$SS

sec min hour
Data Access Latency

Can we shrink tiers to further save cost?

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

C1F
CSD in the storage tiering hierarchy

Tiers Storing 100TB of data
T 200 - [Horison, 2015]
b 5 ¢ A
Performance 1 350
|
|

w

o

o
|

|
|
|
1$159,641
|

N9

U1

o
|

v

RN
Ul O
o O

Cost (x1000S)

-

% 0 Trad. CSD

sec min hour 3-tier 2-tier
Data Access Latency

CSD offers significant cost savings (40%)
But... can we run queries over CSD? 6

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

: C1F
Query execution over CSD

Traditional setting Virtualized enterprise data center
Clients VM1 VM2 VM3
D
o o
A A
objects
blocks ——— e e == —
v
IA1(A2]A3 ; I
CIlC2[C3
B1/B2|B3[B4

HDD-Based Capacity Tier orage Tier

Uniform access/ Control layout \/ Uniform access 3¢ Control layout $¢
Static (pull-based) execution ‘/

Pull-based execution will trigger unwarranted group switches

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

N 1 o
What this means for an enterprise datacenter...

Setting: multitenant enterprise datacenter, clients: PostgreSQL , TPCH 50, Q12, CSD: shared,
layout: one client per group

5 —
=f= HDD ==HDD

Q 4 - Q 7 L
S £
= = |
c c
0 o 3 -8 8 5 |
< QO S5 0
5 v O O
S 9 X9 a4t
x 5 O
Q o 2 ~ Y —

— X 3 L
O X o0
oo — o
O Q 2 -
s 1 e
>
< 1 -

0 0
1 2 3 4 5 0 10 20
Number of clients (groups) Group switch latency (sec)

Lost opportunity: CSD relegated to archival storage g

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

'
Need hardware-software codesign

1. Data access has to be hardware-driven to
minimize group switches

2. Query execution engine has to process data
pushed from storage in out-of-order
(unpredictable) manner

3. Reduce data round-trips to cold storage by
smart data caching

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

CIr |
Skipper to the rescue

Virtualized enterprise data center

\/NA

~

VM1 VM2 VM3 Opportunistic execution

[DB].] [DBZ] “‘ with mU|tI-WaYJo|nS

T ey Mt ety vl)
bject- 3
/0 Scheduler °C < ErOUP map:| Cache @

 —| — — — “"’ Management

C— J— L — J— 1

l Al B1 1
i Y

Progress driven caching 1

Novel ranklng algorithm

Cold Storage

10

Multi-way joins in PostgreSQL

Setting: Query AxBxC, A:A1, A2; B:B1,B2; C:Cl,C2;
VM: PostgreSQL

Subplans:

A1,81,C1

A1,81,C2

Al1,82,C1

A1,82,C2

A2,81,C1

A2,B1,C2

A2,82,C1

A2,B2,C2

ﬁtate Manager

Al1,B1,C1
A2,B1,C1

Cache Manager

Al | A2

C1

Bl

Join Execution \
A1,B1,C1
A2,B1,C1
1
CMmioin

1 1

1 1

1 1
Al Bl C1
A2

Enable out-of-order opportunistic execution

DATA-INTENSIVE APPLICATIONS AND SYSTEMS

CIr |

'
Progress driven caching

Setting: Query AxBxC, Cache size: 4, Cache full, Evict a candidate

Cache :

A1,B1,C2
Al1,B2,C1
A1,B2,C2
A2,B1,C2
A2,B2,C1
A2,B2,C2

C2

Object Al | A2 |B1 |C1 Al | A2 | Bl |C2

Executed | progress | 1] 1| 2 | o

Al1,B1,C1
A2,B1,C1

Progress: 2

Minimizes data roundtrips, maximizes query progress

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

'
Rank-based scheduling

Which group to switch to ?

Group Table objects

G1 01 (DB1), 03 (DB3)
G2 02 (DB2), 04 (DB4)
G3 05 (DB5)

01, 02, 03, 04, 05

TIME

New Ranking Algorithm
Rank(G) = #Requests + 3 Vait

/N

Provides efficiency Provides fairness

o1o3jfjo2 odfo1 E E &

04

FCFS — Fair but inefficient

01.02. 03.04.05

Max-requests: Efficient, not fair

O1

O1

O1

O4 ...

O1

O5 STARVES

Balances efficiency and fairness

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

l
Skipper in action

Setting: multitenant enterprise datacenter, clients: TPCH 50, Q12, CSD: shared,
layout: one client per group

5 —

=¢PostgreSQL 8 a¢=PostgreSQL
v ~#=|deal < 7 -
£ 4 L ; £ ~A-|deal
5 Skipper S 5 6 <=-Skipper
3 4 3 4
X O 3 r g (@) > T
v s v
L O v o 4
00 00
©Cx 2 r O X 3 L
S S
< < 2
1r w S = = = =
1 L
0 0
1 2 3 4 5 0 10 20 30 40
Number of clients Group switch latency (sec)

Skipper performs within 20% of HDD-based capacity tier
Skipper is resilient to group switch latency 14

CIr |
Minimizing group switches

Setting: multitenant enterprise datacenter, 5 clients: TPCH 50, Q12, CSD: shared,
layout: one client per group

S 90%

g 80% B Transfer time
o 0

;c‘ 70% — Switch time
© 60% _

g 50% O Processing
Q 40%

£ 30%

=

S 20%

Q

>

Ll

10%
0%

PostgreSQL Skipper

Skipper substantially reduces overhead of group switches ..

N €1 o
Conclusions

e Cold storage can substantially reduce TCO

— But DBMS performance suffers due to pull-based execution

e Skipper enables efficient query execution over CSD with

— Out-of-order execution based on multi-way joins
— Novel progress based caching policy
— Rank based 1/0 scheduling

e Skipper makes data analytics over CSD as a service possible

— Providers reduce cost by offloading data to CSD
— Customers reduce cost by running inexpensive data analytics over CSD

. Thank you!
AIAS s

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

