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Enterprise database storage tiering
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Proliferation of cold data

“Enterprise data is growing at a rate of 40% to 60% per year
and is projected to grow 50-fold — from under one zettabyte
in 2010 to 40 zettabytes by 2020. “ ,
y Y [GigaOM]

“Archival data presently represents approximately 43-60% of all
data stored online, making it the largest category and at > 60%
CAGR is the fastest growing data classification segment. “

[Horison]

“Although cold data is infrequently accessed, it is still incredibly
valuable. Businesses are increasingly investing in “big data” analytics
to identify customer and operational trends, and to gain business
insights. Cold storage must therefore provide the performance and

capabilities required to enable analysis. [Intel]

Where should we store cold data? .
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Cold data in the storage hierarchy
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Cold Storage Devices — hardware for cold data
Wiwynn]
Active disks

Mlcrosoft S Pellcan
LA LAl
Spectra’s ArcticBlue Deep Storage Disk

P

” Google’s CIoud Storage Nearlme

D’ Power one disk

Cool one disk

Rack-scale PB-size storage based on Constraints on number of active disks
High density HDD organized in MAID Group switch latency ~10sec

TCO of tape + HDD latency, BUT handful of disks at a time:
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Cold storage in the tiering hierarchy
Storing 100TB of data

Tiers '
___________________""; 100 - [Horison, 2015]
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Can cold storage tier (CST) subsume archival and capacity tiers?

CST offers significant cost savings (40%) 6



Cold storage in enterprise data center

Virtualized enterprise data center

Clients Clients
VM1 VM2 VM3 VM1 VM2 VM3
C ) 2 £ C ) 2 £

Nework T[T e B et

HDD-Based Capacity Tier Cold Storage Tier
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Querying data on CSD

Setting: multitenant enterprise datacenter, clients: PostgreSQL , TPCH 50, Q12, CSD: shared,
layout: one client per group
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High group switch latency severely degrades performance =



Cold storage device pitfalls

e Non-uniform access latency

— Same as “warm” storage if data is on the spun-up disk
— Otherwise 4 orders of magnitude slower (10s vs. “ms)

e Shared storage
— Each CSD hosts several DBs (by virtualizing storage)
— DBs do not control data layout (data spread across disks)
— CSD balances multi-tenancy & data locality

Poor & unpredictable DB performance due to lack of control

9
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Why does performance suffer?

t0

t1

t2

t3

t4

t5
t6

m 2 = -

t7

t8

t9

t10
v t11

PG-1

y A
1

Y

CSD

Switch(1)

Switch(2)

Switch(3)

Switch(4)

Switch(5)

Switch(1)

Pull-based execution model incompatible with CSD

10
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m 2 = -
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Need for the paradigm change

. Data access has to be hardware-driven to
minimize group switches

. Query execution engine has to process data
pushed from storage in out-of-order
(unpredictable) manner

. Reduce data round-trips to cold storage by
smart data caching

13
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Skipper to the rescue

Virtualized enterprise data center

\/NA

[VLDB’16]

VM1 VM2 (Multi-wayjoins:

Opportunistic execution triggered
DB1 DB upon data arrival

J \ )
Network 'I' - 3.
ject-group|map. 1

1. | 1/0 Ycheduler t_j_;il ., [Cache @

=== | ™ Management : : :

““ 1 1 1

I Al Bl Cl
\ v A2 /

Novel ranking algorithm: D

Balances access efficiency
across groups and fairness
across clients

Cold Storage

Progress driven caching:
Favors caching of objects to
maximize query progress

Out-of-order execution with efficient cache and
1/0 scheduling policies 1
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Rank-based scheduling

Which group to switch to ?

Group Table objects

G1 O1 (Client1), O3 (Client3)
G2 02 (Client2), 04 (Client4)
G3 05 (Client5)

01, 02, 03, 04, O5

TIME

Rank-based scheduling

Rank(G) = #Requests + > Wait

/N

Provides efficiency Prggiges fairness

O1

o3jjo2

odo1 03@02 04

FCFS — Fair, but inefficient

01.02. 03.04.05

Max-requests: Efficient, not fair

O1

E |

O1

O1

E

102, o4

O1

0302004 ..

Client5 STARVES

Balances efficiency and fairness .
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Multi-way joins in PostgreSQL
Setting: Query AxBxC, A:Al, A2; B:B1,B2; C:C1, C2;
VM: PostgreSQL

ﬁtate Manager Join Execution
Subplans: A1 B1.C1
et

A2,B81,C1

A1,B1,C2 A1,B1,C1
A1,B2,C2 A2,B1,C1
A1,B2,C2
A2,B2,C2
A2,B2,C2 : : :

1 1 1
A2,B2,C1 Al B1 c1
A2,B2,C2 A2

Cache Manager
\ Al|A2|C1|B1 /

Enable out-of-order opportunistic execution -
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Progress-driven caching

Setting: Query AxBxC, Cache size: 4, Cache full, Evict a candidate

Cache a

A1,B1,C2 Al | A2 |Cl1|B1 |+ C2
Al1,B2,C1
Al1,B2,C2
A2,B1,C2
A2,B2,C1
» » ‘.,_‘ ] .
A2B2.C2 New “Maxprs orithm
Object Al |A2 |Bl1 | C1 Al | A2 |Bl1|C2

A1,B1,C1 Progress 1 11210 Progress: 2
A2,B1,C1

Minimizes data roundtrips, maximizes query progress
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Skipper in action [y pp16

Setting: multitenant enterprise datacenter, clients: TPCH 50, Q12, CSD: shared,
layout: one client per group
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Skipper approximates HDD-based capacity by 20% avg.
Skipper is resilient to group switch latency :
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Minimizing group switches

Setting: multitenant enterprise datacenter, 5 clients: TPCH 50, Q12, CSD: shared,
layout: one client per group
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Skipper substantially reduces overhead of group switches -



Layout sensitivity

Setting: 5 clients TPCH 50, Q12, CSD: shared, vary layout (span from 1 to 4 groups)
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I/O SC h ed u I l ng Fairness vs efficiency...

Setting: 5 clients, each TPCH 50, Q12 x10, skewed layout: g1 and g2: 2 clients, g3: one client
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Fairness Efficiency Ranking Fairness Efficiency Ranking

Ranking based 1/0 scheduling balances efficiency and fairness
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Summary

e Cold storage can substantially reduce TCO

— But DBMS performance suffers due to pull-based execution

e Skipper enables efficient query execution over CSD with
— Out-of-order execution based on multi-way joins

— Novel progress-based caching policy
— Rank based /0 scheduling

e Skipper makes data analytics over CSD as a service possible
— Providers reduce cost by offloading data to CSD
— Customers reduce cost by running inexpensive data analytics over CSD

22



What do HW trends tell us?

The five-minute rule thirty years later [CACM’19]

e Growing DRAM-HDD & shrinking DRAM-NVM intervals
Most performance critical data will sit in SSD/NVM

e Rapid improvements in SSD/NVM density
All randomly accessed data can sit in SSD/NVM

e Shrinking HDD—tape/CSD difference w.r.t S/TB scan
Can merge archival+capacity tier into cold storage tier
Sequential batch analytics can be hosted on new tier

Five-minute rule suggests impending consolidation in
the storage hierarchy 23
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Where to go from here

“It is not the strongest species that survive, nor the most intelligent, but the ones
most responsive to change.” Charles Darwin

Queries
[SIGMOD’12]

[VLDB’12]

[CACM’15]

[ICDE’21]

[ICDM’21] m) o

Data
[DBTest’12] Learn

[ICDE’15]
[VLDBJ 18]

m)> Fast response

Adapt

Refine

[VLDB'16]
[ADMS’17]

DBMS System
y Thank you!

Adaptive DBMSs for efficient data analysis 24



Questions?

THANK YOU

25



Analyzing data is expensive

“Most firms estimate that they are only analyzing 12% of
the data that they already have” [Forrester, 2014]

3 DB: 500TB
[WinterCorp, 2013] [Hamilton, 2009]
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Infrastructure expensive for rarely accessed data ..



Monthly cost of a data center
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5 year TCOD for a data warehouse
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Setting: Horison, 100TB, 3 and 4-tier vs.
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Query execution over CSD

Traditional setting Virtualized enterprise data center
D Clients VM1 VM2 VM3
= ) ) [

blocks o objects _|_ o m m - = —
Network
A1|A2JA3
C3
IcTic21c3 ) \‘
C1 B4
IBl B2[B3B4 A3| B3
A B

HDD-Based Capacity Tier Grage Tier

e Uniform access )
* Non-uniform access

* Control layout « No control over layout

e Static (pull-based) execution

Pull-based execution triggers excessive group switches -
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Rank-based scheduling

Which group to switch to ?

Group Table objects

G1 O1 (Client1), O3 (Client3)
G2 02 (Client2), 04 (Client4)
G3 05 (Client5)

01, 02, 03, 04, O5

TIME

Rank-based scheduling

Rank(G) = #Requests + > Wait

/N

Provides efficiency Prggiges fairness

O1

o3jjo2

odo1 03@02 04

FCFS — Fair, but inefficient

01.02. 03.04.05

Max-requests: Efficient, not fair

O1

E |

O1

O1

E

102, o4

O1

0302004 ..

Client5 STARVES

Balances efficiency and fairness .
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Multi-way joins in PostgreSQL
Setting: Query AxBxC, A:Al, A2; B:B1,B2; C:C1, C2;
VM: PostgreSQL

ﬁtate Manager Join Execution
Subplans: A1 B1.C1
et

A2,B81,C1

A1,B1,C2 A1,B1,C1
A1,B2,C2 A2,B1,C1
A1,B2,C2
A2,B2,C2
A2,B2,C2 : : :

1 1 1
A2,B2,C1 Al B1 c1
A2,B2,C2 A2

Cache Manager
\ Al|A2|C1|B1 /

Enable out-of-order opportunistic execution -




:'.f ¥ THE UNIVERSITY OF
i 2, MELBOURNE

Progress driven caching

Setting: Query AxBxC, Cache size: 4, Cache full, Evict a candidate

Cache a

A1,B1,C2 Al | A2 |Cl1|B1 |+ C2
Al1,B2,C1
Al1,B2,C2
A2,B1,C2
A2,B2,C1
» » ‘.,_‘ ] .
A2B2.C2 New “Maxprs orithm
Object Al |A2 |Bl1 | C1 Al | A2 |Bl1|C2

A1,B1,C1 Progress 1 11210 Progress: 2
A2,B1,C1

Minimizes data roundtrips, maximizes query progress



Caching algorithms

Setting: 10 clients, 20 tables each 1-5GB, 2-5 table joins
CSD: shared, layout: one client per group
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Maximal progress minimizes request reissue .,



Maximum efficiency algorithms

Setting: 10 clients, 20 tables each 1-5GB, 2-5 table joins
CSD: shared, layout: random per object

FCFS <==Round-Robin =te=\ax-Chunks
——Min-Chunks -o-Max-Queries -o-Shortest-Query
Shortest-Subplan
20
% \ — ® ® o
ZI 15 B
(@\| = ——— e —— —
—
10 +

0
5 A 7 R 9 10

Max. queries in 20% of optimal in all layouts .
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Skipper in action

Setting: multitenant enterprise datacenter, clients: TPCH 50, Q12, CSD: shared,
layout: one client per group
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Skipper performs within 20% of HDD-based capacity tier
Skipper is resilient to group switch latency 36
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I/O SC h ed u I i ng Fairness vs efficiency...

Setting: 5 clients, each TPCH 50, Q12 x10, skewed layout: g1 and g2: 2 clients, g3: one client

stretch; = observed_time/ideal_time; 12 —norm =+ Y. stretch?
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Fairness Efficiency Ranking Fairness Efficiency Ranking

Rank-based 1/0 scheduling balances efficiency and fairness -
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Simulator: K-parameter variation

Setting: 10 clients, 20 tables 1-5GB, 2-5 table joins, 10-100 queries per client

CSD: shared, layout: power-law 80% clients in 20% groups
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Kin (0,1) performance between efficiency and fairness ..



Cost (thousands
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Cold Storage in the storage tiering

,680.00 [Horison, 2015]

1,382.40
|

Storage Configuration

CSD cost Total cost Savings
$/GB k$/100TB | kS

0.01 334.182 159.641

0.1 342.016 151.808

0.2 350.72 143.104

1 420.352 73.472

39
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