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Big data proliferation
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* “The Digital Universe in 2020: Big Data, Bigger Digital Shadows, 
and Biggest Growth in the Far East“, 2012, IDC

“Big data is when the current technology does not enable users 

to obtain timely, cost-effective, and quality answers to data-driven 
questions. “  [Steve Todd, Berkeley]

₸ “Trends in big data analytics“, 2014, Kambatla et al

Technology follows Moore’s Law ₸



What business analysts want
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Timely, predictable, cost-effective queries
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Research challenge
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As traditional DBMS rely on predefined assumptions 
about workload, data and storage, changes cause 

loss of performance and unpredictability.

Insight
Query execution must adapt and learn form

workload, data and hardware to stabilise and optimise
performance and cost.



Outline

• Minimise data-to-insight time
– Workload-driven learning and adaptation 

• Improve predictability of response time
– Data-driven learning and adaptation

• Reduce analytics cost
– Hardware-driven learning and adaptation
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[CACM’15, SIGMOD’12, VLDB’12]

[VLDBJ’18, ICDE’15, DBTest’12]

[CACM’19, ADMS’17, VLDB’16]
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Need for efficient data exploration
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Current technology ≠ efficient exploration

Data-to-insight time
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NoDB: Workload-driven data loading & tuning

Optimise raw data querying stack
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Adjust to queries = progressively cheaper access 

PostgresRaw: NoDB from idea to practice
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Pointers to end of tuples

Pointers to attributes

1|Supplier#01|17|335-1736|5755.94|each slyly...

2|Supplier#02|5|861-2259|4032.68| slyly bold... 

3|Supplier#03|1|516-1199|4192.40|blithely... 

4|Supplier#04|15|787-7479|4641.08|riously eve... 

5|Supplier#05|11|21-151-690-3663|-283.84|. 

Slyly... 6|Supplier#06|14|24-696-997-

4969|1365.79|final...

...

2. Cache
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PostgresRaw in action
Setting: 7.5M tuples, 150 attributes, 11GB file
Queries: 10 arbitrary attributes per query, vary selectivity
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Per query performance comparable to traditional DBMS 11

Data-to-insight time halved with PostgresRaw



Summary of PostgresRaw
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• Query processing engine over raw data files

• Uses user queries for partial data loading and tuning

• Comparable performance to traditional DBMS

IMPACT

• Enables timely data exploration with 0 initialisation

• Decouples user interest from data growth



Lesson #1
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Learn from workload 
to decrease data to insight time



Outline

• Minimise data-to-insight time
– Workload-driven learning and adaptation 

• Improve predictability of response time
– Data-driven learning and adaptation

• Reduce analytics cost
– Hardware-driven learning and adaptation
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[CACM’15, SIGMOD’12, VLDB’12]

[VLDBJ’18, ICDE’15, DBTest’12]

[CACM’19, ADMS’17, VLDB’16]



Performance degraded after tuning

Index: with or without?
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Re-optimization: risky

Access path selection problem

Selectivity
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Re-optimization 
[MID’98, POP’04, RIO’05, BOU’14]



Removing variability due to (sub-optimal) choices

Quest for predictable execution
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Smooth Scan
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Morph between Index and Sequential Scan 
based on observed result distribution



Morphing mechanism
Modes:

1. Index Access: Traditional index access

2. Entire Page Probe: Index access probes entire page

3. Gradual Flattening Access: Probe adjacent region(s)

19

...

HEAP 
PAGES

INDEX

Mode 1 Mode 2 Mode 3



Morphing policy
• Selectivity Increase  -> Mode Increase

• Selectivity Decrease -> Mode Decrease

SEL_region >= SEL_global
SEL_region <   SEL_global

X X X XX X X X X X X X XX

INDEX

XX

SR:1 SR:1 SR:0.5 SR:0.75 SR:1 SR:1 SR:0.5 SG: 0

X: Page with result

SR: Region selectivity

SG: Global selectivity

10.810.660.70.75Region snooping = Data-driven adaptation

HEAP PAGES

20
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Setting: Micro-benchmark, 25GB table, Order by, Selectivity 0-100%

Near-optimal over entire selectivity range 21



Summary of Smooth Scan 
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• Statistics-oblivious access path

• Uses region snooping to morph between alternatives

• Near-optimal performance for all selectivities

IMPACT

• Removes access path selection decision

• Improves predictability by reducing variability in 
query execution



Lesson #2
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Learn from data 
to reduce query response time

and improve predictability 



Outline

• Minimise data-to-insight time
– Workload-driven learning and adaptation 

• Improve predictability of response time
– Data-driven learning and adaptation

• Reduce analytics cost
– Hardware-driven learning and adaptation

24

[CACM’15, SIGMOD’12, VLDB’12]

[VLDBJ’18, ICDE’15, DBTest’12]

[CACM’19, ADMS’17, VLDB’16]



Storage is expensive for rarely accessed data
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“Most firms estimate that they are only analyzing 12% of 
the data that they already have” [Forrester 2014]
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Cost of tapes and (best case) latency of disks

Cold Storage Devices (CSD) to the rescue

Cool one disk

26

Active disks

Power one diskA

B

Latency ~10ms

Latency ~10secSuperMicro’s Storage Server

Facebook’s Cold Storage

Microsoft’s Pelican

Spectra’s ArcticBlue Deep Storage Disk

Google’s Cloud Storage Nearline

[Wiwynn CSD]

But ONE disk group active at any point in time
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Storage tiering in data centres
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[VLDB’16, ADMS’17, CACM’19]

Can we shrink tiers to 
reduce storage cost?

2-tier architecture based on 
CSD HALVES storage cost

But can we run queries on top of it?

Storage tiering in data centres



29

Query execution over CSD
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Skipper to the rescue
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Network

VM

Cache 
Management 

DB1

Cold Storage          

Virtualised enterprise data center

DB2 DB3

VM1 VM2 VM3

I/O Scheduler
object-group map.

MJoin

Hash Hash Hash

Scan A Scan B Scan C

A1 B1 C1

A2

PostgreSQL

1.

2.

3.

Progress driven caching:
Favors caching of objects to 
maximise query progress

Multi-way joins:
Opportunistic execution 
triggered upon data arrival

Novel ranking algorithm: 
Balances access efficiency
across groups and fairness
across clients



Skipper in action

31Cost benefit without (significant) performance penalty

Setting: multitenant enterprise datacenter, clients: TPCH 50, Q12, 
CSD: shared, layout: one client per group
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Summary of Skipper

32

• Efficient query execution over CSD with:

1. Rank-based I/O scheduling

2. Out-of-order execution based on multi-way joins 

3. Progress based caching policy

• Approximates performance of HDD-based storage tier

IMPACT

• Cold storage can reduce TCO by shrinking storage hierarchy

• Skipper enables data analytics-over-CSD-as-a-service



Lesson #3
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Learn from HW 
to reduce storage cost without 
sacrificing query performance



Summary
• Minimise data-to-insight time

– Workload-driven learning 

– Load/tune as a byproduct of workload execution

• Improve predictability of response time
– Data-driven learning

– Transform access path gradually to fit data properties 

• Reduce analytics cost
– Hardware-driven learning

– From plan pull-based to hardware push-based execution

34



Is there (M) Learning in learning DBMS?

• Many decisions can be automated (with 
sufficient training)

• A lot of infrastructure already exists (query 
monitoring, execution plans, stats)

• Finding the right “hammer” for every problem 
is key

• Regret bounds (provable guarantees) makes it 
appealing

35



Automated tuning with provable guarantees

• With multi-armed bandit algorithms
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Workload Q1, Q2, …,Qt …

Index choicesQuery plan

[A.b, A.c]
[B.a]
[B.d]
[A.a, A.b]

[A.a]

[A.b]

[A.a, A.b] …

[B.a]

[A.c]

Candidates

DBMS engine

Bandit 
selection

B

σ (𝐵. 𝑎 < 4)

[A.a, A.b, A.c]

A

Join

σ (𝐴. 𝑎 > 10)

σ (𝐴. 𝑏 = 5)

Reward (30 min)



Preliminary results
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Learning DBMSs for efficient data analysis

The big picture

Queries

Data 
Fast response

DBMS System
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“It is not the strongest species that survive, nor the most intelligent, but the ones 
most responsive to change.” Charles Darwin

Learn
Adapt 
Refine

Hardware

[SIGMOD’12] 
[VLDB’12] 
[CACM’15]

[DBTest’12] 
[ICDE’15] 
[VLDBJ’18] 

[VLDB’16]
[ADMS’17]
[CACM’19] Thank you!



Looking ahead

39* http://reportlogix.com/reporting.html ₸ www.tableausoftware.com

Source: * Source: ₸Business analyst

Data analysis for the masses

Data classification

Approximate answers

Storage layouts HW-SW co-design

Dynamic query plans
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Questions?

THANK YOU
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