A tale of learning databases

Dr Renata Borovica-Gajic

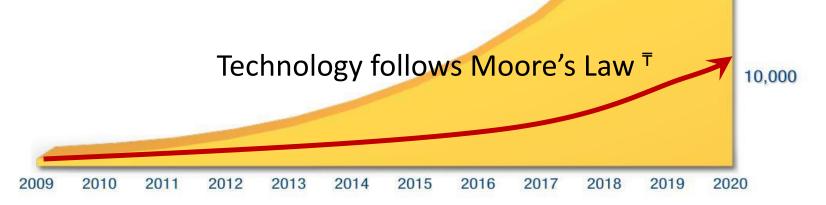
renata.borovica@unimelb.edu.au
http://renata.borovica-gajic.com/

40,000

Big data proliferation

The Digital Universe: 50-fold Growth from the Beginning of 2010 to the End of 2020

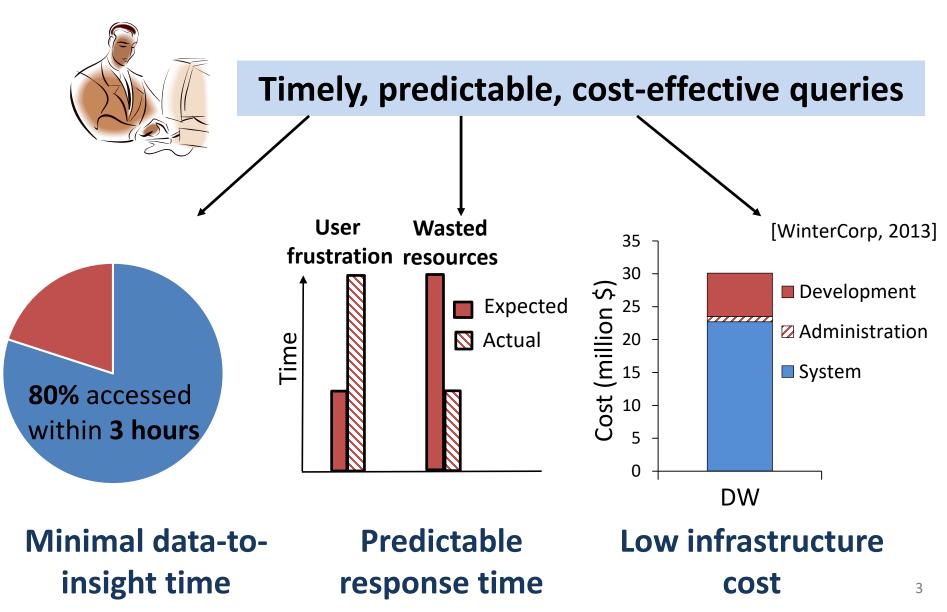
"Big data is when the current technology does not enable users to obtain **timely**, **cost-effective**, and **quality** answers to **data-driven questions**. *"* [Steve Todd, Berkeley]



* "The Digital Universe in 2020: Big Data, Bigger Digital Shadows, and Biggest Growth in the Far East", 2012, IDC

₸ "Trends in big data analytics", 2014, Kambatla et al

What business analysts want



Research challenge

As traditional DBMS rely on *predefined assumptions* about workload, data and storage, changes cause **loss of performance** and **unpredictability**.

Insight

Query execution must adapt and learn form workload, data and hardware to stabilise and optimise performance and cost.

Outline

- Minimise data-to-insight time
 - Workload-driven learning and adaptation

[CACM'15, SIGMOD'12, VLDB'12]

• Improve predictability of response time

- Data-driven learning and adaptation

[VLDBJ'18, ICDE'15, DBTest'12]

Reduce analytics cost

- Hardware-driven learning and adaptation

[CACM'19, ADMS'17, VLDB'16]

Outline

- Minimise data-to-insight time
 - Workload-driven learning and adaptation

[CACM'15, SIGMOD'12, VLDB'12]

- Improve predictability of response time
 - Data-driven learning and adaptation

[VLDBJ'18, ICDE'15, DBTest'12]

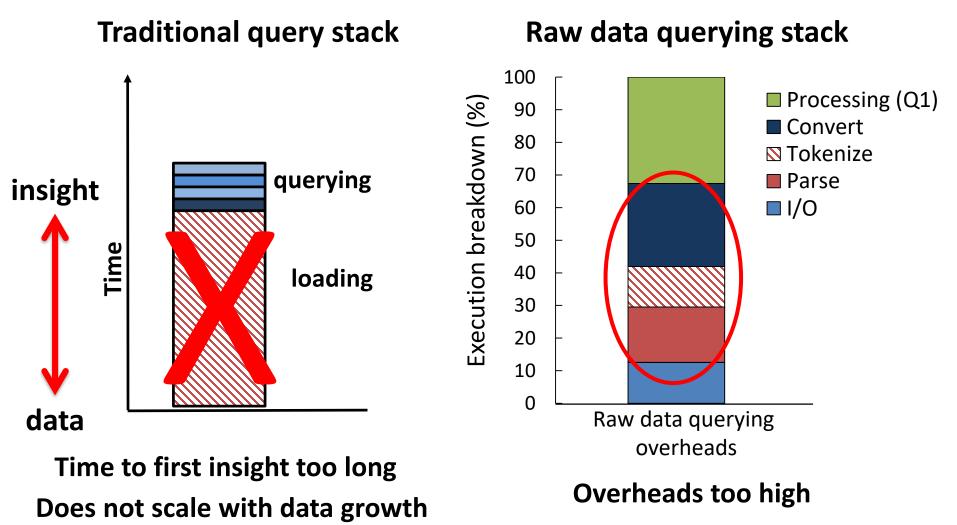
- Reduce analytics cost
 - Hardware-driven learning and adaptation

[CACM'19, ADMS'17, VLDB'16]

Need for efficient data exploration

7

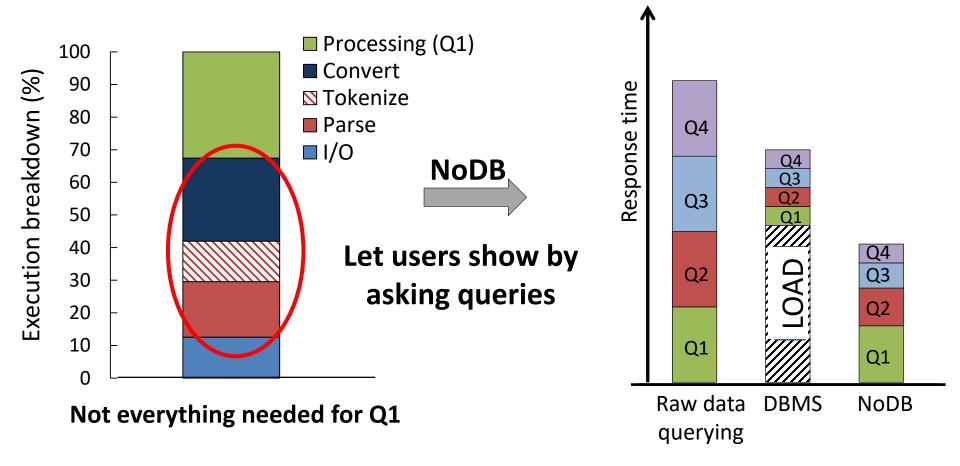
Data-to-insight time



Current technology ≠ efficient exploration

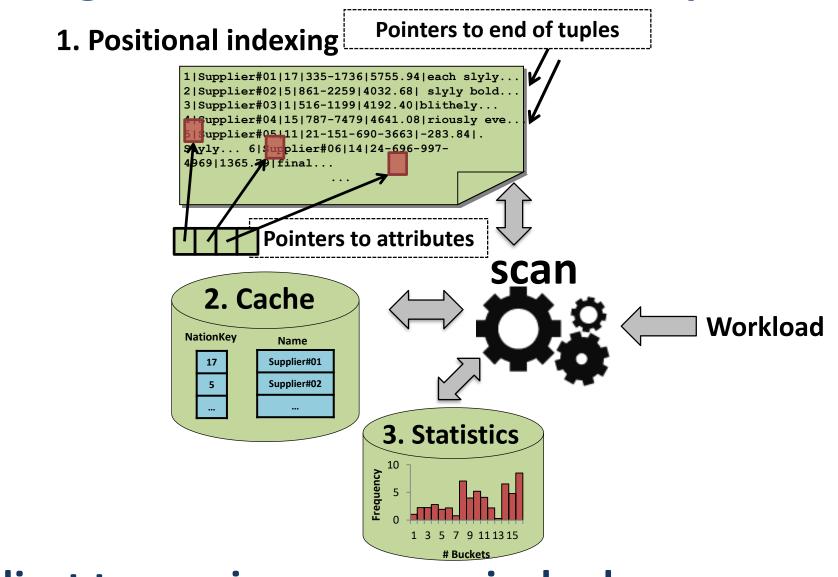
Optimise raw data querying stack

Raw data querying stack



NoDB: Workload-driven data loading & tuning

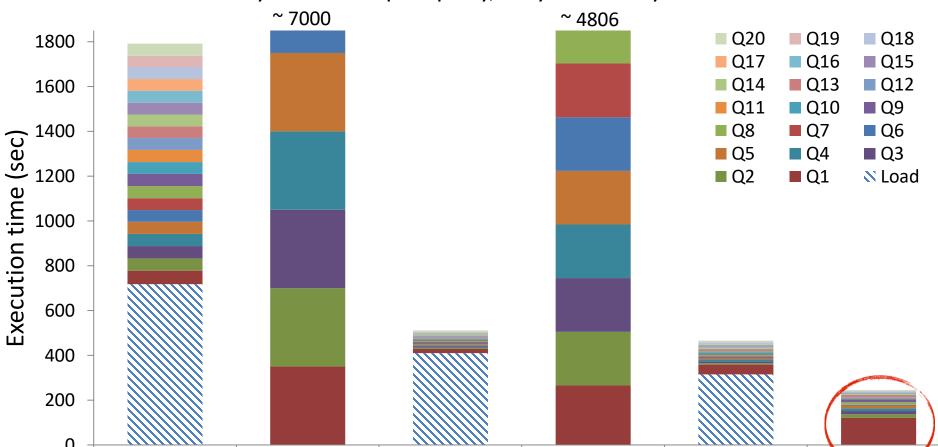
PostgresRaw: NoDB from idea to practice



Adjust to queries = progressively cheaper access 10

PostgresRaw in action

Setting: 7.5M tuples, 150 attributes, 11GB file **Queries**: 10 arbitrary attributes per query, vary selectivity



Data-to-insight time halved with PostgresRaw Per query performance comparable to traditional DBMS 11

Summary of PostgresRaw

- Query processing engine over raw data files
- Uses user queries for partial data loading and tuning
- Comparable performance to traditional DBMS

IMPACT

- Enables timely data exploration with 0 initialisation
- Decouples user interest from data growth

Learn from workload to decrease data to insight time

Outline

- Minimise data-to-insight time
 - Workload-driven learning and adaptation

[CACM'15, SIGMOD'12, VLDB'12]

• Improve predictability of response time

- Data-driven learning and adaptation

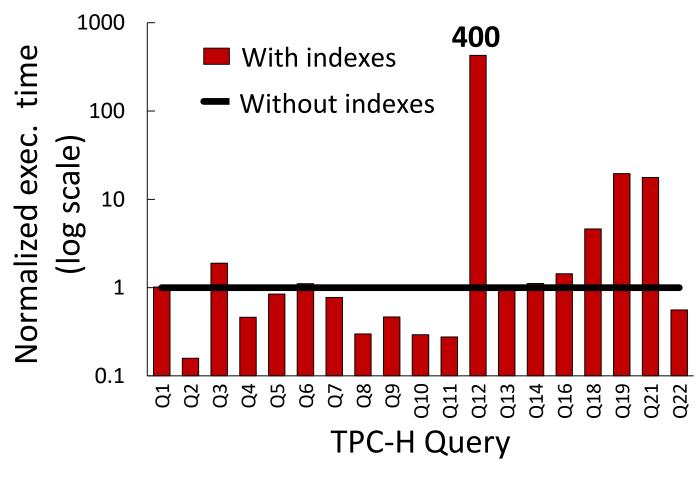
[VLDBJ'18, ICDE'15, DBTest'12]

- Reduce analytics cost
 - Hardware-driven learning and adaptation

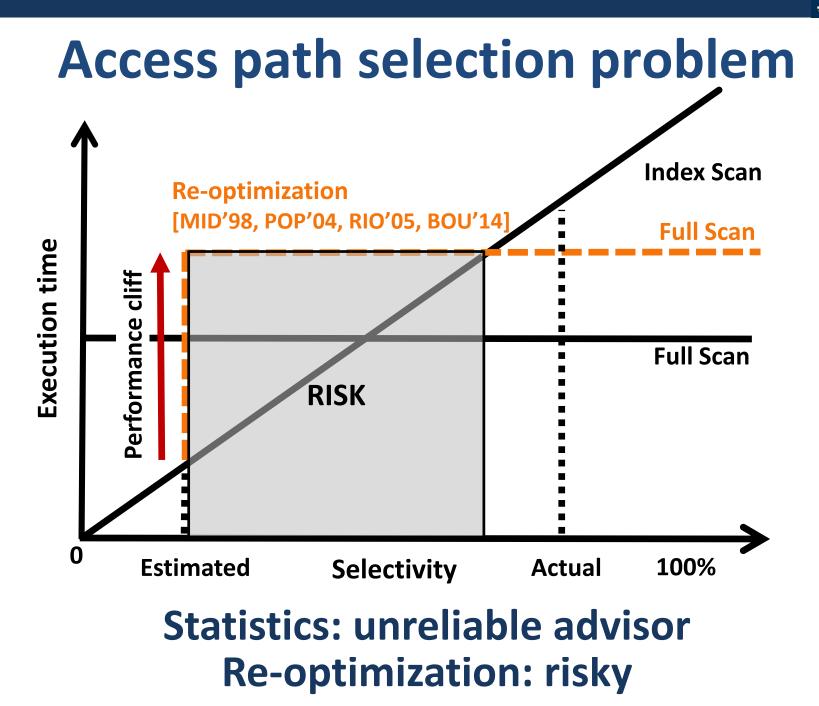
[CACM'19, ADMS'17, VLDB'16]

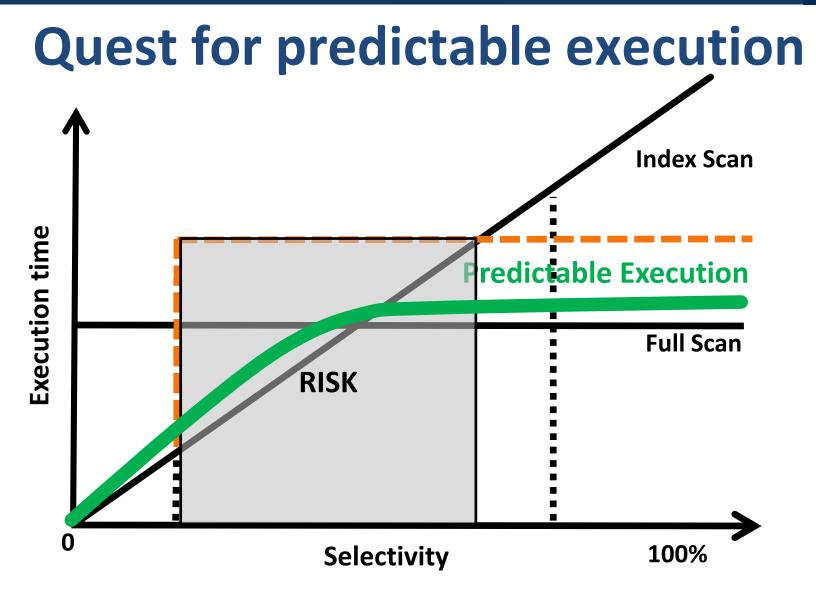
Index: with or without?

Setting: TPC-H, SF10, DBMS-X, Tuning tool 5GB space for indexes



Performance degraded after tuning





Removing variability due to (sub-optimal) choices 17

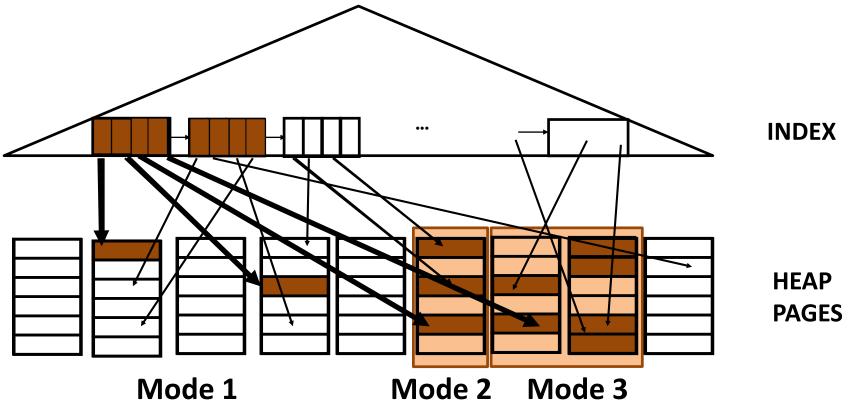
Smooth Scan

Morph between Index and Sequential Scan based on observed result distribution

Morphing mechanism

Modes:

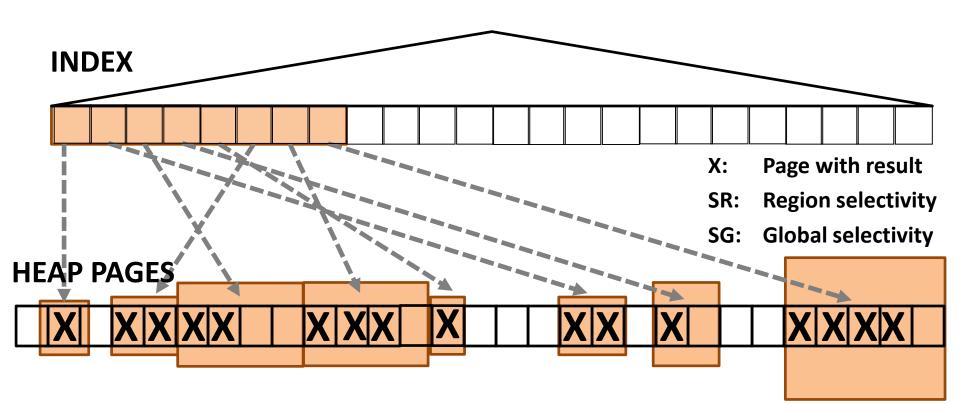
- 1. Index Access: Traditional index access
- 2. Entire Page Probe: Index access probes entire page
- 3. Gradual Flattening Access: Probe adjacent region(s)



Morphing policy

- Selectivity Increase -> Mode Increase
- Selectivity Decrease -> Mode Decrease

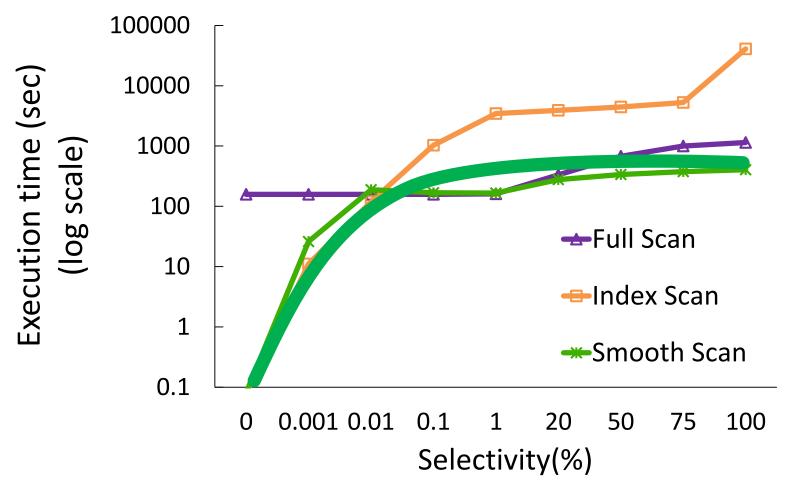
SEL_region >= SEL_global
SEL_region < SEL_global</pre>



Region snooping = Data-driven adaptation

Smooth Scan in action

Setting: Micro-benchmark, 25GB table, Order by, Selectivity 0-100%



Near-optimal over entire selectivity range

Summary of Smooth Scan

- Statistics-oblivious access path
- Uses region snooping to morph between alternatives
- Near-optimal performance for all selectivities

IMPACT

- **Removes** access path selection **decision**
- Improves predictability by reducing variability in query execution

Learn from data to reduce query response time and improve predictability

Outline

- Minimise data-to-insight time
 - Workload-driven learning and adaptation

[CACM'15, SIGMOD'12, VLDB'12]

- Improve predictability of response time
 - Data-driven learning and adaptation

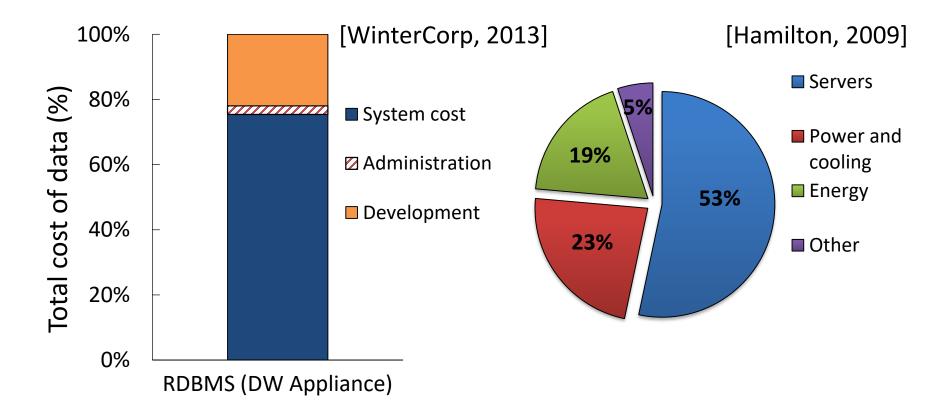
[VLDBJ'18, ICDE'15, DBTest'12]

- Reduce analytics cost
 - Hardware-driven learning and adaptation

[CACM'19, ADMS'17, VLDB'16]

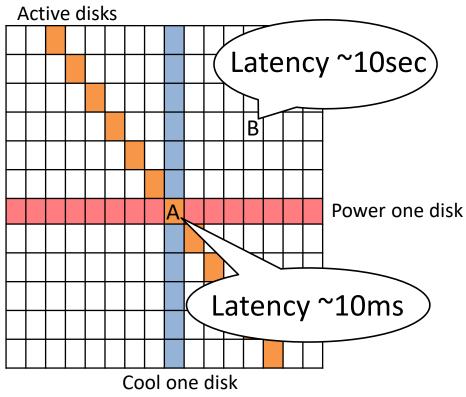
Storage is expensive for rarely accessed data

"Most firms estimate that they are only analyzing 12% of the data that they already have" [Forrester 2014]



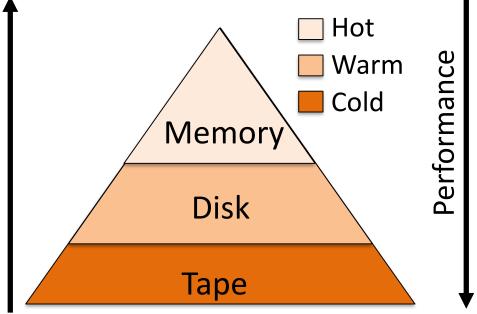
Cold Storage Devices (CSD) to the rescue

[Wiwynn CSD]



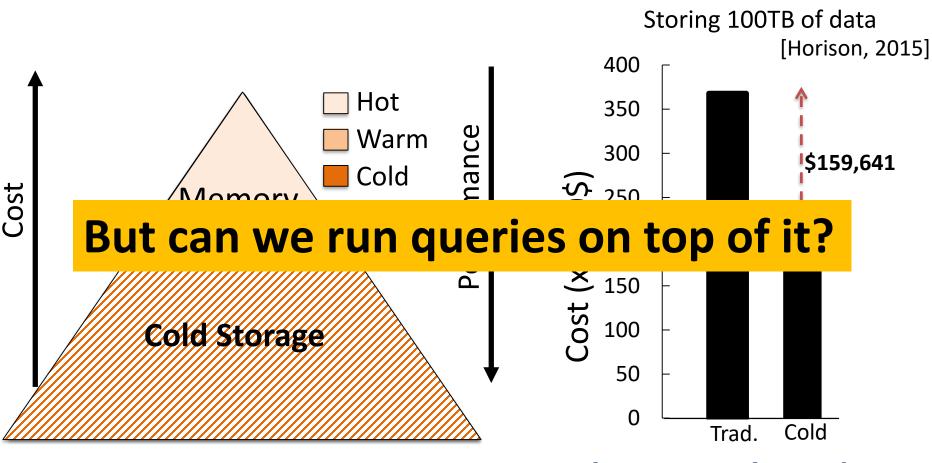
Cost of tapes and (best case) latency of disks But ONE disk group active at any point in time

Storage tiering in data centres



Storage tiering in data centres

[VLDB'16, ADMS'17, CACM'19]



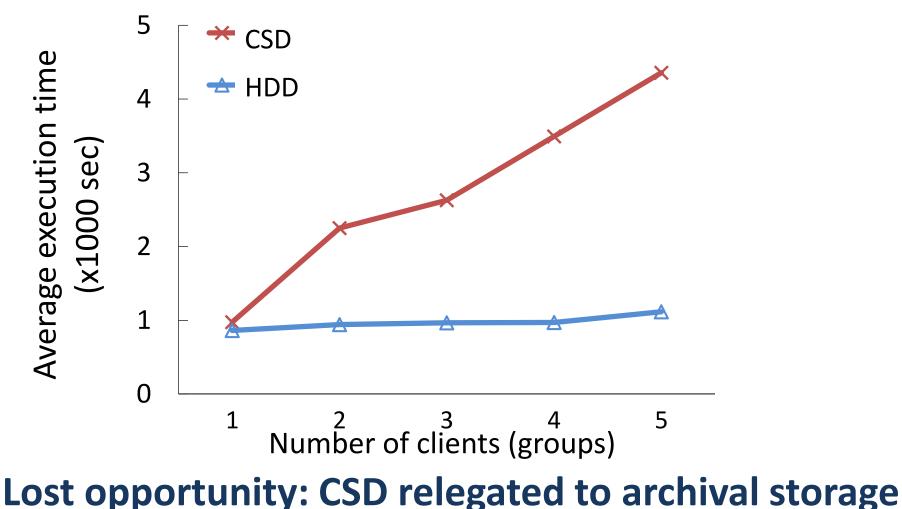
Can we shrink tiers to reduce storage cost?

2-tier architecture based on CSD HALVES storage cost

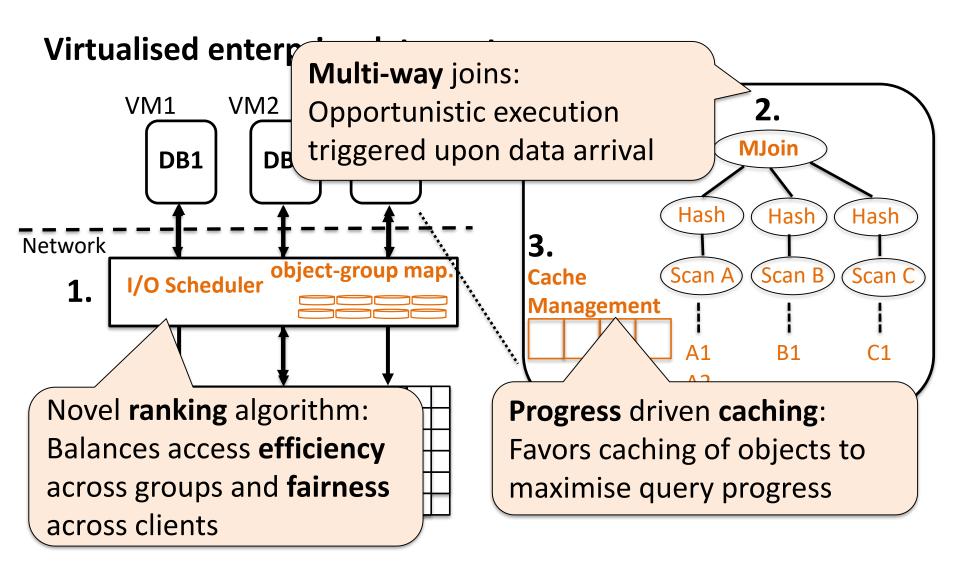
Query execution over CSD

Setting: virtualised enterprise datacenter, clients: PostgreSQL, TPCH 50, Q12,

CSD: shared, layout: one client per group

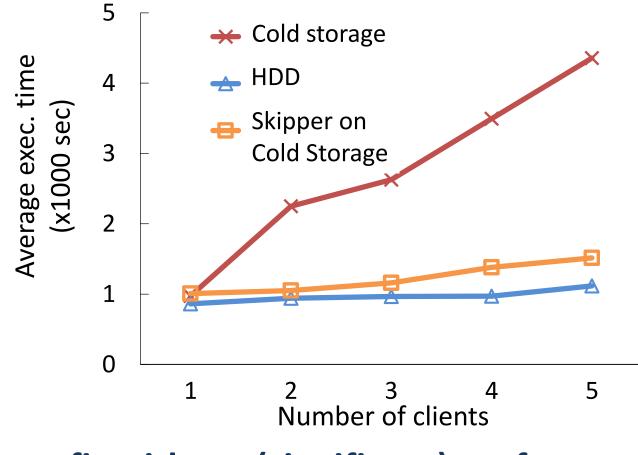


Skipper to the rescue



Skipper in action

Setting: multitenant enterprise datacenter, clients: TPCH 50, Q12, CSD: shared, layout: one client per group



Cost benefit without (significant) performance penalty

Summary of Skipper

- Efficient query execution over CSD with:
 - 1. Rank-based I/O scheduling
 - 2. Out-of-order execution based on multi-way joins
 - 3. Progress based caching policy
- Approximates performance of HDD-based storage tier

IMPACT

- Cold storage can reduce TCO by shrinking storage hierarchy
- Skipper enables data analytics-over-CSD-as-a-service

Learn from HW to reduce storage cost without sacrificing query performance

Summary

- Minimise data-to-insight time
 - Workload-driven learning
 - Load/tune as a byproduct of workload execution
- Improve predictability of response time
 - Data-driven learning
 - Transform access path gradually to fit data properties

Reduce analytics cost

- Hardware-driven learning
- From plan pull-based to hardware push-based execution

Is there (M) Learning in learning DBMS?

- Many decisions can be automated (with sufficient training)
- A lot of infrastructure already exists (query monitoring, execution plans, stats)
- Finding the right "hammer" for every problem is key
- Regret bounds (provable guarantees) makes it appealing

Automated tuning with provable guarantees

• With multi-armed bandit algorithms

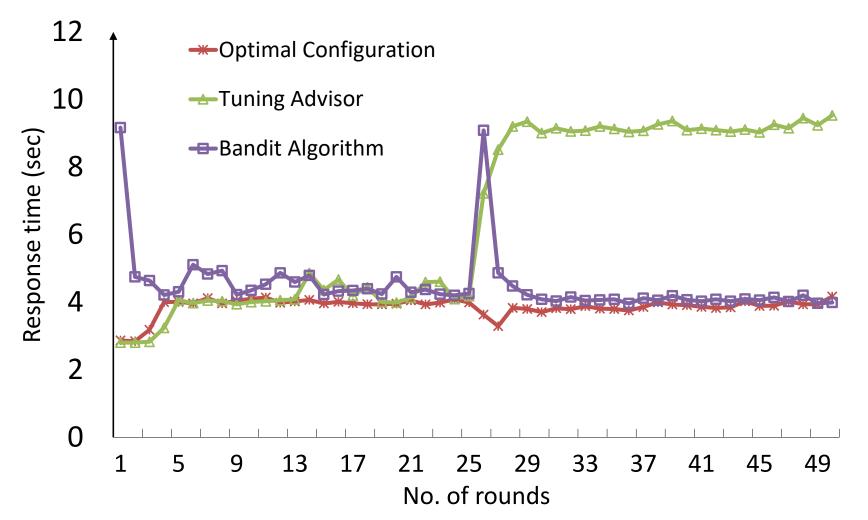
Workload $Q_1, Q_2, ..., Q_t$... Query plan Index choices [A.a, A.b, A.c] [A.b, A.c] **Bandit** [B.a] Join selection Candidates [A.a] |[B.d] [A.a, A.b] $\langle \sigma (A. a > 10) \rangle$ [B.a] [A.b] $\langle \sigma(B.a < 4) \rangle$ [A.c] $\langle \sigma (A, b = 5) \rangle$ [A.a, A.b] В Reward (30 min) Α

DBMS engine

Preliminary results

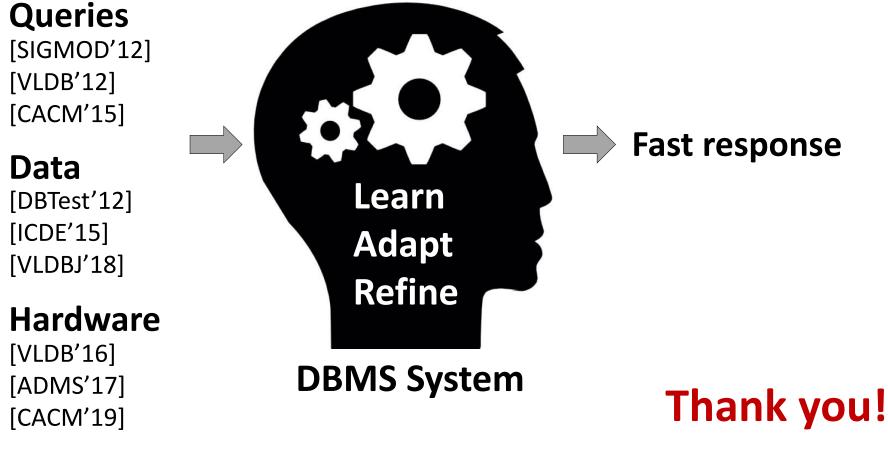
Setting: Micro-benchmark 100M tuples, 5 attributes,

3 queries per round (varying selectivity and attributes chosen)



The big picture

"It is not the strongest species that survive, nor the most intelligent, but the ones most responsive to change." Charles Darwin



Learning DBMSs for efficient data analysis

Looking ahead

Business analyst

Source: *

Source: **T**

Data analysis for the masses

Data classification

Dynamic query plans

Approximate answers

Storage layouts

HW-SW co-design

My collaborators

Anastasia Ailamaki, EPFL & Raw Labs Ioannis Alagiannis, EPFL Miguel Branco, EPFL & Raw Labs Raja Appuswamy, EPFL

Stratos Idreos, Harvard University

Marcin Zukowski, Snowflake

Thomas Heinis, EPFL & Imperial

Imperial College London

Satya Valluri, EPFL & Oracle

ORACLE

Farhan Tauheed, EPFL & Oracle

ORACLE

Oracle Labs

Campbell Fraser, Google

Google

snowflake snowflake

MELBOURNE

THANK YOU

Publications

- **[CACM'19]** R. Appuswamy, <u>R. Borovica-Gajic</u>, G. Graefe, and A. Ailamaki. *The five minute rule thirty years later and its impact on the storage hierarchy*. Communications of the ACM, 2019.
- [VLDBJ'18] <u>R. Borovica-Gajic</u>, S. Idreos, A. Ailamaki, M. Zukowski and C. Fraser. *Smooth Scan: Robust Access Path Selection without Cardinality Estimation*. VLDB Journal, 2018.
- **[ADMS'17]** R. Appuswamy, <u>R. Borovica-Gajic</u>, G. Graefe, and A. Ailamaki. *The five minute rule thirty years later and its impact on the storage hierarchy*. ADMS, 2017.
- **[VLDB'16]** <u>R. Borovica-Gajic</u>, R. Appuswamy and A. Ailamaki. *Cheap Data Analytics Using Cold Storage Devices*. VLDB, 2016.
- **[CACM'15]** I. Alagiannis, <u>R. Borovica-Gajic</u>, M. Branco, S. Idreos and A. Ailamaki. *NoDB: Efficient Query Execution on Raw Data Files*. Communications of the ACM, Research Highlights, 2015.
- **[ICDE'15]** <u>R. Borovica-Gajic</u>, S. Idreos, A. Ailamaki, M. Zukowski, and C. Fraser. *Smooth Scan: Statistics-Oblivious Access Paths*. ICDE, 2015.
- **[SIGMOD'12]** I. Alagiannis, <u>R. Borovica</u>, M. Branco, S. Idreos and A. Ailamaki. *NoDB: Efficient Query Execution on Raw Data Files*. SIGMOD, 2012.
- **[VLDB'12]** I. Alagiannis, <u>R. Borovica</u>, M. Branco, S. Idreos and A. Ailamaki. *NoDB in Action: Adaptive Query Processing on Raw Data*. VLDB, 2012. (demo)
- **[DBTest'12]** <u>R. Borovica</u>, I. Alagiannis and A. Ailamaki. *Automated Physical Designers: What You See is (Not) What You Get.* DBTest, 2012.